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Math 184 Exam 1 SHOW ALL WORK / Name lily
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1. Solve each system (if possible). State the solution VERY clearly. If there is no
solution, say so. You may use a calculat to put each augmented matrix in RREF.

3 ]. Show your work.
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2. If possible, find a so that: [31 42].[23 4] _ [ 7a - 17

~~ 3. Find all values of the scalar a for which the matrix l~~;]is not invertible.
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4. Assume A,B,C,D are rummatrices, and A and C are invertible, Solve the following
matrix equation for B, using steps appropriate for matrices:

ABC=D
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5. Recall that the trace of a matrix, denoted tr(A), is just the sum of the diagonal entries,

Prove that for any scalar c, tr(cA) = c tr(A),
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/rl 6. Determine if the set of all 3x1 vectors is a vector space under the standard operation

of vector addition with scalar multiplication defined as follows: k·[;1= [d:: 1·
Justify your answer either by showing at least one axiom that fails and how it fails or
else by showing the zero and additive inverse vectors. .
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10 7. Is the set of all symmetric matrices a subspace ofM run ? Justify your answer.
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8. Give a basis for the set of diagonal 3x3 matrices.
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9. Let the vector <a,b,c> be an element of the subspace ofR3 spanned by the set of
vectors {<I ,0,0>, <2,-1,3>,<1,2,-5>} . What are the conditions necessary for a,b,c? In
other words, are there any restrictions on a,b,c? Answer VERY clearly.
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Explain, using the definition of linear independence.




