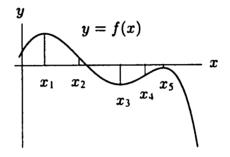
Math 181	
Calculus 1	
Final Exam	
Score	

Name		

Read each of the questions carefully and show all your work.

- 1. The graph of f(x) is given
 - (a) Sketch the graph of f'(x) on the same axes.
 - (b) Where does f'(x) change its sign?
 - (c) Where does f'(x) have a local maximum or minimum?



2. For the function g(x) shown in Figure 2.3, arrange the following numbers in increasing order.

- (a) 0
- (b) g'(-2)
- (c) g'(0)
- (d) g'(1)
- (e) g'(3)

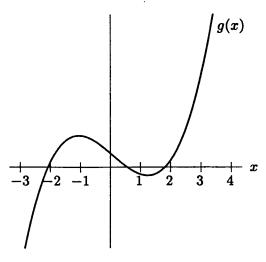


Figure 2.3

3. Given $f(x) = 5x^2 + 3x - 12$,

- (a) Find the slope of the tangent line to the curve at x = -2.
- (b) What is the equation of this tangent line?
- (c) Find all points where the curve has a horizontal tangent.

4. For $f(x) = 2x^3 - 9x^2 + 12x + 1$, $(0 \le x \le 3)$, do the following:

- (a) Find f' and f''.
- (b) Find the critical points of f.
- (c) Find any inflection points.
- (d) Evaluate f at the critical points and the endpoints. Identify the global maxima and minima of f.
- (e) Sketch f. Indicate clearly where f is increasing or decreasing, and its concavity.

a.
$$f(t) = 2te^t - \frac{1}{\sqrt{t}}$$

$$b. \quad w = \frac{5 - 3z}{5 + 3z}$$

$$c. \quad f(t) = \cos^2(3t+5)$$

6. Find the indefinite integrals:

(a)
$$\int (3e^x + 2\sin x) \, dx$$

(b)
$$\int \left(4t + \frac{1}{t}\right) dt$$

Find the exact area of the shaded region in Figure 6.29 between $y = 3x^2 - 3$ and the x-axis.

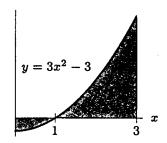
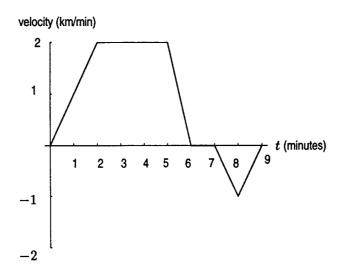


Figure 6.29

8. A car is moving along a straight road from A to B, starting from A at time t = 0. Below is the velocity (positive direction is from A to B) plotted against time.

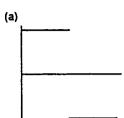


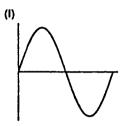
How many kilometers away from A is the car at time t = 2, 5, 6, 7, and 9?

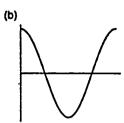
- 9. Suppose the rate at which ice in a skating pond is melting is given by $\frac{dV}{dt} = 4t + 2$, where V is the volume of the ice in cubic feet, and t is the time in minutes.
- (a) Write a definite integral which represents the amount of ice that has melted in the first 4 minutes.
- (b) Evaluate the definite integral in part (a).

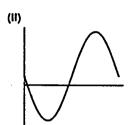
<u>Function</u>

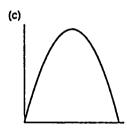
Antiderivative

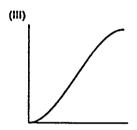


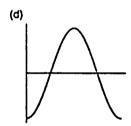


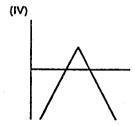










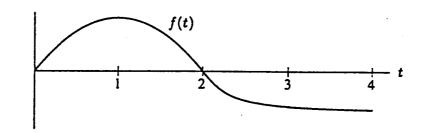


Extra Credit Problem

The function f(t) is graphed below and we define

$$F(x) = \int_0^x f(t)dt.$$

Are the following statements true or false? Give a brief justification of your answer.



- (a) F(x) is positive for all x between 2 and 3.
- (b) F(x) is decreasing for all x between 1 and 3.
- (c) F(x) is concave down for $x = \frac{1}{2}$.

Math 181
Calculus 1
Final Exam
Score

١	Vame	
-	40000	

Read each of the questions carefully and show all your work.

- The graph of f(x) is given 1.

 - Sketch the graph of f'(x) on the same axes. Where does f'(x) change its sign? $\swarrow_{(+)} \swarrow_{(+)} \bigvee_{(+)} \bigvee_$ (b)

 x_3 x_4

2. For the function g(x) shown in Figure 2.3, arrange the following numbers in increasing order.

- (a) 0
- (b) g'(-2)
- (c) g'(0)
- (d) g'(1)
- (e) g'(3)

>0

- 9'(0)
- 9(1)
 - 0
- 9'(-2)
- 91(3)

Figure 2.3

3. Given
$$f(x) = 5x^2 + 3x - 12$$
,

- (a) Find the slope of the tangent line to the curve at x = -2.
- (b) What is the equation of this tangent line?
- (c) Find all points where the curve has a horizontal tangent.

a)
$$f'(x) = 10x + 3 \rightarrow f'(-2) = 10(-2) + 3 = -17$$

b)
$$f(-2) = 5(-2)^2 + 3(-2) - 12 = 2$$

 $y - 7 = m(4 - 4)$
 $y - 2 = -17(x - (-2)) \rightarrow y = -17x - 32$

()
$$f'(x) = 0 \rightarrow 10x + 3 = 0 \rightarrow x = -3 = -0.3$$

so tangent horizontal when
$$\chi = -\frac{3}{10} = -0.3$$

For $f(x) = 2x^3 - 9x^2 + 12x + 1$, $(0 \le x \le 3)$, do the following:

- (a) Find f' and f''.
- (b) Find the critical points of f.
- (c) Find any inflection points.
- (d) Evaluate f at the critical points and the endpoints. Identify the global maxima and minima of f.
- (e) Sketch f. Indicate clearly where f is increasing or decreasing, and its concavity.

$$(a) f'(x) = (3)(2)x^{3-1} - (2)(a)x^{2-1} - (1)(12)x^{1-1} + 0$$
$$= 6x^{2} - 18x + 12$$

$$f''(x) = (2)(6) x^{2-1} - (1)(18) x^{1-1} + 0$$
$$= 12x - 18$$

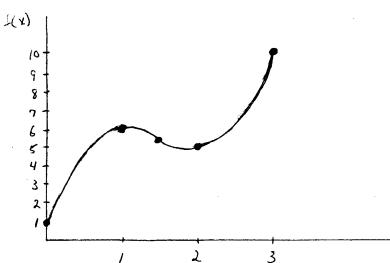
$$6x^{2}-19x+12=0 \rightarrow 6(x^{2}3x+2)=0$$

 $\rightarrow 6(x-1)(x-1)=0$

$$\frac{X=2, X=1}{\text{Critical Points!}(1,6) \text{ and } (2,5)}$$

Inflection Point:
$$(\frac{3}{2}, \frac{11}{2})$$
 or $(|\frac{1}{2}, 5\frac{1}{2})$

$$f(o): I \rightarrow (0, I)$$



5. Find derivatives for the functions

a.
$$f(t) = 2te^{t} - \frac{1}{\sqrt{t}}$$

$$f'(+) = 2e^{+} + 2 + e^{+} + \frac{1}{2} + \frac{3}{2}$$

b.
$$w = \frac{5-3z}{5+3z}$$

 $\omega' = -\frac{3(5+3z)-3(5-3z)}{(5+3z)^2}$
 $\omega' = -\frac{15-4z-15-4z}{(5+3z)^2}$
 $\omega' = \frac{-30}{(5+3z)^2}$
c. $f(t) = \cos^2(3t+5)$

c.
$$f(t) = \cos^2(3t+5)$$

 $f(t) = [\cos(3t+5)]^2$
 $f'(t) = 2\cos(3t+5) \cdot -\sin(3t+5) \cdot 3$
 $= -6\cos(3t+5) \sin(3t+5)$

6. Find the indefinite integrals:

$$\int (3e^{x} + 2\sin x) dx$$

$$\int \left(3(e^{x}) + 7(\sin x)\right) dx$$

$$= 3(e^{x}) + 7(\cos x)$$

$$= 3e^{x} - 7(\cos x) + C$$

(b)
$$\int \left(4t + \frac{1}{t}\right) dt$$

 $\int \left(4t + \frac{1}{t}\right) dt$
 $\int \left(4t + \frac{1}{t}\right) dt$

7. Find the exact area of the shaded region in Figure 6.29 between $y = 3x^2 - 3$ and the x-axis.

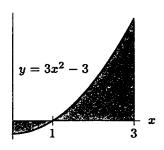


Figure 6.29

$$\int_{0}^{3} |y| dx = -\int_{0}^{1} (3x^{2} - 3) dx + \int_{1}^{3} (3x^{2} - 3) dx$$

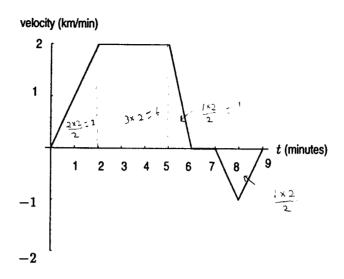
$$= -\left[x^{3} - 3x\right]_{0}^{1} + \left[x^{3} - 3x\right]_{1}^{3}$$

$$= -(1 - 3) + (27 - 9) - (1 - 3)$$

$$= 2 + 18 + 2$$

$$= 22$$

8. A car is moving along a straight road from A to B, starting from A at time t = 0. Below is the velocity (positive direction is from A to B) plotted against time.



How many kilometers away from A is the car at time t = 2, 5, 6, 7, and 9?

t	2	5	6	7	9
Km anay from A	2	8	9	9	8

- 9. Suppose the rate at which ice in a skating pond is melting is given by $\frac{dV}{dt} = 4t + 2$, where V is the volume of the ice in cubic feet, and t is the time in minutes.
- (a) Write a definite integral which represents the amount of ice that has melted in the first 4 minutes.
- (b) Evaluate the definite integral in part (a).

a)
$$dV = (4t+2) dt$$

$$\sqrt{\int_0^4 (4t+2) dt}$$

$$b) \quad V = 2t^2 + 2t \Big]_0^4$$

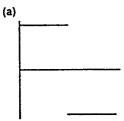
=
$$32+8-0$$

 $V = 40 + f^3$ of ice melted in first 4 minutes

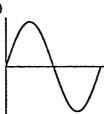
Match the following functions with their antiderivatives:

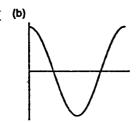
Function

Antiderivative

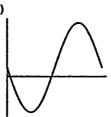


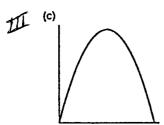
(1)



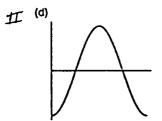


(11)





(III)



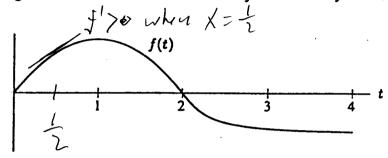
(IV)

Extra Credit Problem

The function f(t) is graphed below and we define

$$F(x) = \int_0^x f(t)dt.$$

Are the following statements true or false? Give a brief justification of your answer.



- (a) F(x) is positive for all x between 2 and 3.
- (b) F(x) is decreasing for all x between 1 and 3.
- (c) F(x) is concave down for $x = \frac{1}{2}$.