taky AL

 \hat{l} \hat{l} Illowsky – Chapt. 4, 6, 7, & 8 $p^{4}m$ of notes Larson – Chapt. 4, 5, & 6

Math 123 Exam 2

SHOW ALL WORK

Name

 \mathcal{M} , $\mathcal{H}\mathcal{M}$ The given table shows how many employees different small businesses from a random 1. sample employ. Let X = the number of employees per business. Build a probability distribution table for X, then find μ , the expected number of employees per business.

Number o	f Employees 1 ගෙර		5 (1)	2 . FRY 101- 218 A
Number of		15 49 31	3/101	(3,158×101= 318,9
X	P(X)	$X \cdot P(X)$	7 (01	
ŀ	3/101 = 0.029.70	0.02978		
2	15/101 = 0.14851	0.2970%		
3	49/101 = 0.48514	1.45544		
4	31/101 = 0,30693	1.22772		
5	$\frac{31}{101} = 0.30693$ $\frac{3}{101} = 0.02978$	0.14851	(expected # of M=3.1584	employees per business)
	0 במס			

- 2. Suppose 20% of all small businesses have only $\overline{Q} \overline{Q}$ employee. You choose $\underline{6}$ small businesses at random. Justify your answers to the following:
- a. How many of the businesses in your sample would you expect to have one employee?

b. What is the probability that exactly 4 of the businesses have one employee?

$$P(X=4) = 0.01536$$

bicompetf (6,0.20,4)

c. What is the probability that <u>at least 2 of the businesses have one employee?</u>

$$P(x \ge 2) = 0.34464$$

binomcdf(6,0.20,1)=0.65536
1-0.65536=0.34464

3. If the mean number of employees per small business is <u>2.8</u>, what is the probability that a randomly chosen small business will have <u>2</u> employees?

man

$$P(x=2)$$

possion pdf(2.8,2)=0.23837

4. Suppose 20% of all small businesses have exactly one employee. If you repeatedly ask small business owners how many employees they have, what is the probability that you will need to ask <u>no more than 4</u> owners before finding one that has <u>only one</u> employee?

5. Use the standard normal distribution table in the text (or a calculator) to find the following probabilities:

a.
$$P(Z > -1.34) = 0.9099$$

01

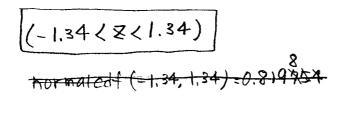
1 2 3

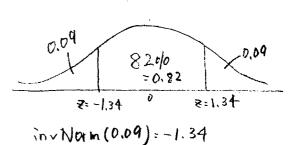
normale d-f (-1.34, 1,000)= 0.90987

pormaled+(0.40, 2.76)= 0.34168

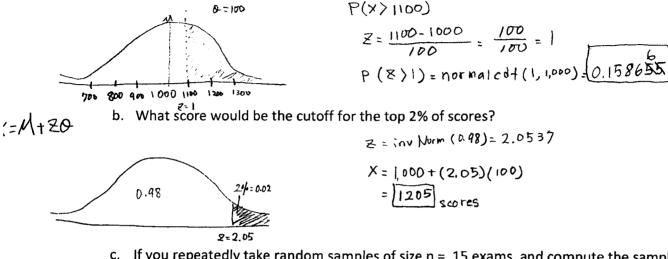
b. P(0.40 < Z < 2.76) = D.3417

6. Find the value of Z such that 82% of the area under the standard normal curve lies between --Z and Z.





- 7. Suppose that scores on an exam are normally distributed with a mean of $\mu = 1000$ and a standard deviation of $\sigma = 100$. Show your work on the following:
- a. What is the probability that a randomly chosen exam score will exceed 1100?



c. If you repeatedly take random samples of size n = 15 exams, and compute the sample mean score for each sample, what values would you expect to find for the mean and standard deviation of the sampling distribution of the sample mean?

$$M\bar{x} = 1,000 \qquad \Theta\bar{x} = \frac{0}{\sqrt{n}} = \frac{100}{\sqrt{15}} = 25.8\frac{2}{1988}$$

d. What is the probability that the mean score from a random sample of 30° exams will be

less than 970?
$$Z = \overline{y} - M$$

 $Z = \frac{q}{100} - 1.000$
 $Z = \frac{q}{100} - 1.000$
 $Z = \frac{q}{100} - 1.000$
 $\overline{13.257} = -1.643$
Nor Malcdf $(-1,000, -1.64) = [0.0505]$

$$N = Pq \left(\frac{2i}{E}\right)^{2}$$

Nan (0.05

2

Z=X-M

8. You wish to estimate the proportion of small businesses that have one employee to within a margin of error of 2 percentage points, with 90% confidence. What is the minimum sample size required, assuming you have no preliminary sample data? $E = 2\% \text{ points} \Rightarrow 0.02$

$$\hat{\varphi} = 0.5 \qquad n = (0.5)(0.5)\left(\frac{1.645}{0.02}\right)^{2}$$

$$\hat{\varphi} = 0.5 \qquad = 0.25 (6765.0625)$$

$$= 1.645 \qquad = 1.645 \qquad = 1.645 \qquad = 1.645 \qquad = 1.691.265625 \qquad = 1.692 \qquad \text{small businesses}$$

n=200 n>30

9. Suppose a survey of 200 randomly chosen businesses found that 160 offer their employees 2 weeks of paid vacation per year. Build a 95% confidence interval for the E=Zc/pg population proportion of businesses that offer 2 weeks of paid vacation per year. X = 160 n = 200 $\beta = \frac{160}{200} = 0.8$ $\beta = 0.2$ $C = 45 \ \text{m} \rightarrow 0.95$ $z_c = 1.960$

 $E = 1.960 \sqrt{\frac{(0.8)(0.2)}{200}} = 0.0554\%$

$$0.8 - 0.0554 < P < 0.8 + 0.0554 (0.7446 < P < 0.8554)$$

n:34 10. Suppose a random sample of 34 businesses found that the mean number of employees was 23.7 with standard deviation 3.5. Build a 99% confidence interval for the population mean number of employees per business.

$$N = 34 \qquad E = t_{c} \left(\frac{5}{\sqrt{n}}\right) \qquad Confidence interval: 23.7 - 1.64 $\angle A \angle 23.7 + 1.64$
$$S = 3.5 \qquad t_{c} = 2.733 \quad (from chart) \qquad 23.7 - 1.64 $\angle A \angle 23.7 + 1.64$
$$S = 3.5 \qquad t_{c} = 2.733 \quad (from chart) \qquad 22.06 $\angle A \angle 25.34$
$$C = 99\% = 0.99 \qquad E = (2.733) \left(\frac{3.5}{\sqrt{31}}\right) \qquad 22.06 \angle A \angle 25.34$$

$$E = 1.64 \qquad 11. \text{ Suppose a random sample of the hourly wage for n = 5 employees at a business yielded the following: $19.32, $12.50, $11.12, $12.00, $9.56. Assuming that hourly wages are normally distributed, build a 95\% confidence interval for the population mean hourly wage for employees at this business. $\overline{X} = 12.9 \qquad S = 3.7\frac{5.84}{5.84} \qquad c = 95\% \Rightarrow 0.95 \qquad n = 5 \qquad df = 4 \qquad T_{c} = 2.776$$$$$$$$$

because or not Known

Ŷ-E<P<₽+E

 $E = 2.776 \left(\frac{3.76}{\sqrt{5}} \right) = 4.6679 a$

12.9-4.6679 < M < 12.9+4.6679 8.2321 < M <17.5679

12. Diseuss the importance of the normal distribution of Wages in Problem 11. B<30 but I still can build a CI because I know that Standard doviation. Also, #11 told me that assuming that hourly wages are normally distributed"