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Roughly 60% of 2-year-college entrants do not meet col-
lege-readiness standards for college math (Bailey et al., 
2010). These students are typically required to complete pre-
requisite developmental education (dev-ed) courses—which 
do not count toward a degree—before enrolling in introduc-
tory college courses. Because students placed into dev-ed 
are more likely to come from racially minoritized and lower-
socioeconomic-status backgrounds, dev-ed, in its current 
form, appears to exacerbate inequities in academic outcomes 
(Bailey et al., 2010; Marshall & Leahy, 2020). In response to 
dismal rates of dev-ed completion and calls for reform, states 
and college systems are adopting corequisite coursework: a 
model where students concurrently enroll in college-level 
and developmental coursework.

The corequisite model enables students to earn college-
level credits immediately while providing hands-on support 
through a paired dev-ed (or “corequisite”) course. Moving 
students through their dev-ed requirements and gateway 
math course can improve their momentum toward gradua-
tion (Adelman, 2006; Calcagno et al., 2007; Jenkins & 
Bailey, 2017; Wang et al., 2017). Inspired by promising evi-
dence from early corequisite adopters across the country 
(e.g., Denley, 2015, 2016; Logue et al., 2016, 2019; Ran & 
Lin, 2019), there has been a recent flurry of dev-ed policy 

reform toward corequisite coursework, where 24 states now 
include corequisite supports as a means to accelerate student 
access to college-level coursework (Education Commission 
of the States, 2021). As a result, states and colleges across 
the country are rapidly replacing the traditional dev-ed 
sequence with corequisite coursework.

As corequisite reforms proliferate, colleges must deter-
mine how to pair courses and which faculty should teach 
them. Despite evidence that corequisite models improve 
efficiency for completing introductory, or “gateway,” col-
lege-level courses (Logue et al., 2016, 2019; Meiselman & 
Schudde, 2021; Miller et al., 2021; Ran & Lin, 2019), some 
faculty and staff resist adopting them (Brower et al., 2017; 
Daugherty et al., 2018), with adoption lagging considerably 
in math compared with English (Cuellar Mejia et al., 2020; 
Morales-Vale, 2019). As personnel work to scale reforms, 
evidence of best practices can overcome faculty concerns 
and inform decision-making.

This study can inform corequisite model development by 
illuminating how corequisite math course features predict 
student outcomes. We leverage state administrative data to 
examine how public 2-year colleges in Texas implemented a 
statewide mandate for corequisite coursework. Our results 
offer insights into how colleges structure corequisite courses 
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in response to reforms and how corequisite coursework 
characteristics predict student outcomes.

Literature Review

Many students placed in dev-ed never complete their 
dev-ed coursework (Bailey et al., 2010; Clotfelter et al., 
2015). Long, multicourse dev-ed sequences may impede 
student progress and cost students time and money (Deil-
Amen & Rosenbaum, 2002; Melguizo et al., 2016). 
Restructuring dev-ed pathways so that students quickly 
accrue college-level credits could expedite student progress, 
where corequisites immediately offer students access to col-
lege credit. Next, we describe evidence for the impacts of 
corequisite coursework, followed by an overview of research 
on corequisire course characteristics.

Background on Corequisites

Descriptive findings from Tennessee, the first state to 
mandate corequisite reforms, suggest that corequisite mod-
els improve completion rates of gateway college math 
(Denley, 2015, 2016). To date, one experimental study 
(Logue et al., 2016, 2019) and two quasiexperimental stud-
ies (Meiselman & Schudde, 2021; Ran & Lin, 2019) illus-
trate positive short-term outcomes of corequisite math 
coursework, and one experimental study and one quasiex-
perimental study illustrate positive short-term outcomes of 
corequisite English coursework (Cho et al., 2012; Miller 
et al., 2021). In a randomized controlled trial at City 
University of New York (CUNY), students were placed in 
either prerequisite algebra—the traditional dev-ed math 
course (the control group)—or a college-level statistics 
course with a developmental support course (the treatment 
group) (Logue et al., 2016). Those in the corequisite statis-
tics coursework were more likely to pass college-level math 
and, 3 years later, had completed more math courses, fin-
ished required coursework more quickly, and graduated at 
higher rates than those in prerequisite algebra. Studies in 
Tennessee and Texas found similar short-term positive 
impacts on passing college-level math, though they showed 
no increase in degree attainment after 3 years (Meiselman & 
Schudde, 2021; Ran & Lin, 2019).

Combined, the evidence of these three studies in different 
contexts supports the notion that corequisite math is more 
effective than prerequisite dev-ed math at increasing gate-
way math completion. At the same time, colleges imple-
menting corequisites face logistical and financial concerns 
and need information about how to structure corequisites for 
student success.

The Role of Varied Course Designs

In response to policies aimed at increasing corequisite 
coursework, many institutions are scrambling to pair 

college-level math courses with corequisite developmental 
supports. Corequisite models can include several different 
structural components: Colleges must determine the timing of 
the corequisite support course, how to assign faculty to teach 
paired courses, instructional modality, whether to include col-
lege-ready students in the college-level course, and which 
math pathways (e.g., algebra, statistics) to prioritize.

Timing of developmental support. Many corequisite advo-
cates envision that colleges will provide “just-in-time” sup-
port for the college-level course, with dev-ed course material 
concurrently supplementing college-level material; however, 
this is not always the case (Daugherty et al., 2018). Some 
corequisite courses are organized sequentially: The dev-ed 
component is taken first—serving as an embedded prerequi-
site—and the college-level, second within the same term 
(Daugherty et al., 2018; Meiselman & Schudde, 2021). Cur-
rently, little evidence exists about how timing the corequisite 
support course predicts student outcomes. Meiselman and 
Schudde (2021) offered preliminary evidence that students in 
“embedded prerequisites” were slightly more likely to pass 
college-level math and persist in college than “true corequi-
site” students, but their identification strategy did not fully 
account for selection into the embedded prerequisite model.

Instructor structure and characteristics. Another structural 
component concerns whether the college-level course and 
dev-ed support course are taught by the same instructor. If 
two instructors teach the courses, they must collaborate and 
communicate to maintain similar pacing and align content. 
The extent of the alignment between the two courses can 
improve the student experience; using the same instructor 
may facilitate alignment (Daugherty et al., 2021).

Non-tenure-track (NTT) faculty have traditionally taught 
the bulk of developmental coursework (Datray et al., 2014; 
Grubb & Cox, 2005), but corequisite reforms may shift some 
of that responsibility to tenure-track (TT) faculty. Faculty 
with different contractual forms often face different respon-
sibilities and levels of job security (Conley et al., 2002; Ran 
& Xu, 2018). In a public 2-year-college system with no TT 
faculty, Ran and Xu (2018) found that students in introduc-
tory courses with short-term NTT instructors (i.e., NTT fac-
ulty with temporary adjunct contracts), compared with 
long-term NTT instructors (those with longer-term con-
tracts), experienced higher grades but lower probabilities of 
taking and passing additional courses in the sequence. 
Research suggests that contextual and institutional factors 
related to part-time employment rather than instructor char-
acteristics (e.g., race/ethnicity, gender, and highest degree 
earned) explain the association between NTT faculty status 
and student outcomes (Ran & Sanders, 2020).

Instruction modality and type. Research suggests that tak-
ing an introductory college-level math course online, as 
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opposed to face-to-face, is associated with a 10-percentage-
point decrease in the probability of passing it and a 15-per-
centage-point increase in the probability of course 
withdrawal (Xu & Jaggars, 2011). Taking developmental 
courses online is also negatively associated with student out-
comes, including enrolling in and passing subsequent gate-
way courses (Jaggars & Xu, 2010), although research on 
hybrid developmental courses offers more optimistic find-
ings. Research from Kentucky suggests that public-2-year-
college students in a hybrid developmental math course—a 
mix of in-person and online sessions—were more likely to 
persist to the following semester than were those in a face-
to-face class (Davidson & Petrosko, 2015). Identifying the 
effects of instructional modality is challenging because stu-
dents select course modality aligned with their preferences, 
where students with the greatest external obligations (work-
ing for pay, caring for dependents) are more likely to select 
online options (Dutton et al., 2002).

The dev-ed support course can be structured in several 
ways. It can be course based—structured primarily as a lec-
ture in a traditional course format—or non–course based, 
where the supports are offered outside of traditional class-
room instruction (Daugherty et al., 2018). A non-course-
based dev-ed section has the potential to align content with 
student needs; for example, it can include sections offered at 
a tutoring center with modularized computer-adaptive 
instruction or with an instructor who supports students with 
various levels of needs at their own pace. To date, no studies 
have explored the roles instructional modality or type play in 
student outcomes within a corequisite model.

Class composition and size. In structuring corequisite 
coursework, practitioners must decide whether to include 
both college-ready and dev-ed students in the college-level 
course. The mixed-ability model has some support in K–12 
math settings, where research indicates that students with 
lower prior achievement benefit the most from collaborating 
with peers on math problems (Boaler, 2008; Fuchs et al., 
1997, 2001). Some evidence suggests that similar peer effects 
occur in college science, technology, engineering, and math-
ematics (STEM) classrooms, although the only work in this 
area examines students at an elite university (Ost, 2010). In 
the only study (to our knowledge) on peer effects on course 
outcomes at community colleges, Liu and Xu (2021) found 
that the percentage of dual-enrollment students (those taking 
college coursework for credit during high school) enrolled in 
a community college course was negatively correlated with 
academic performance among non-dual-enrollment students 
(Liu & Xu, 2021). Parallels may exist with mixed-ability 
classrooms, in which students who need developmental sup-
port take college-level math with college-ready peers, but 
because those students are also college students, their pres-
ence may not evoke the same response. Mixed-ability classes 
may also increase teacher expectations for students with the 

lowest prior achievement, as teachers tend to teach to the 
middle-range ability group when confronted with varied stu-
dent ability (Tomlinson, 2014).

Class size is also linked with student outcomes, where 
K–12 research suggests that smaller classes improve stu-
dents’ academic performance, perhaps through shifts in 
teachers’ instructional strategies or increased social and aca-
demic engagement compared with larger classes (Finn et al., 
2003). Class size has not been focal in higher education 
research, though some studies in university settings link 
larger class sizes to fewer interactions with faculty and peers 
and lower grades (Beattie & Thiele, 2016; Johnson, 2010; 
Kokkelenberg et al., 2008).

Math pathways. Dev-ed reforms have often coincided with 
math pathways reforms, which reconsider the status quo 
algebra-for-all approach to college math requirements. 
Under math pathways, students can select quantitative rea-
soning (QR), statistics, or algebra depending on their desired 
major (Bryk & Treisman, 2010). Math-pathways reforms 
focus on changing both the content and instruction of math 
in college, offering options for math content and shifting 
instructional approaches for how they learn it (Zachry 
Rutschow et al., 2019). In a randomized controlled trial in 
Texas, Zachry Rutschow and colleagues (2019) illustrated 
that the Dana Center Math Pathways model, which acceler-
ated dev-ed course sequences and reformed math curricula 
across three math pathways, positively impacted college-
level math course completion and number of math credits 
earned.

Research on the link between math pathway—which type 
of math course students take—and student outcomes is lim-
ited. Extant experimental research on corequisite math in the 
CUNY system (Logue et al., 2016, 2019) targeted students 
whose majors did not require algebra. The experiment identi-
fied stronger effects of corequisite statistics coursework on 
several long-term academic outcomes, including transfer and 
degree attainment, compared with studies focused on coreq-
uisites in contexts with a mix of math pathways or primarily 
algebra (Meiselman & Schudde, 2021; Ran & Lin, 2019); it 
is difficult to know whether the differences in findings result 
from math pathways or different study contexts. Ran and Lin 
(2019) found that there were differential effects of corequi-
site math coursework across math pathways, where the posi-
tive effects of corequisite math coursework on completing 
college-level math were largely driven by students taking 
non-algebra college math rather than college algebra.

Although interest in corequisite models has increased, 
little research has explored the efficacy of different 
approaches and how students in corequisite coursework 
respond to corequisite course structures and characteristics. 
College personnel implementing corequisite reforms need 
this information to build efficient, effective math pipelines 
for students.
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Research Questions

To help meet the pressing need for information about the 
link between corequisite coursework characteristics and stu-
dent outcomes, we address the following research 
questions:

1. As colleges worked to implement a statewide coreq-
uisite mandate, how did they structure corequisite 
math coursework, including timing of course pair-
ings, instructional modalities, math pathway offer-
ings, and instructor assignments?

2. How do corequisite course structures and character-
istics predict student outcomes?

Policy Contexts

Half of all first-time college students at Texas public 
2-year institutions do not meet college-readiness standards 
in math—a score of 350 on the math Texas Success Initiative 
(TSI) assessment, a placement test taken at college entrance 
(Texas Higher Education Coordinating Board [THECB], 
2016). Seeking stronger student outcomes, some colleges 
implemented corequisite coursework as early as 2014 but 
enrolled only a small fraction of students in corequisite math 
offerings (Meiselman & Schudde, 2021). In 2017, Texas’s 
85th Texas Legislature passed House Bill 2223 (HB2223), a 
mandate for colleges to scale corequisites for students who 
do not meet college-readiness standards. HB2223 required 
colleges to enroll at least 25% of all developmental students 
in each subject (i.e., math and English) in corequisite course-
work by fall 2018, 50% by fall 2019, and 75% by fall 2020 
(THECB, 2018). Using rulemaking authority, the THECB 
recently amended the policy to require that colleges move to 
100% corequisites by fall 2021 (THECB, 2020).

HB2223 allowed colleges to determine how to structure 
corequisite math coursework. The recently enacted policy 
allows for sequential corequisite models as long as the dev-
ed and college-level courses are offered within the same 
term. State policy requires that faculty with appropriate cre-
dentials teach the college-level component; this standard 
may shape colleges’ decisions to assign the same instructor 
across paired courses, because dev-ed instructors may lack 
the credential needed to teach college-level courses.

Method

To answer our research questions, we used statewide 
administrative data provided through a restricted-use agree-
ment with the Texas Education Research Center (ERC), a 
research center and data clearinghouse at the University of 
Texas at Austin. We defined corequisite math coursework as 
enrolling in dev-ed and introductory college-level math 
courses in the same semester. Our analytic sample includes 
community college students who enrolled in corequisite 

math in a fall or spring term between fall 2018 and spring 
2020. We relied on descriptive statistics to capture the struc-
ture and characteristics of corequisite math coursework. We 
used regression to explore the relationship between course 
characteristics and student outcomes, such as course pass-
ing, persistence in college, and vertical transfer.

Data

The ERC data includes student-level data for the entire 
population of secondary and postsecondary students in 
Texas. We used student-level data collected by the THECB, 
including files capturing student demographics, college 
enrollment, course enrollment and grades, placement test 
scores, and financial aid information, along with demo-
graphic and occupational information on course instructors.

To create the analytic sample, we first identified commu-
nity college students who enrolled in dev-ed and college-
level math within the same semester in the period after 
HB2223 was enacted (fall 2018 to spring 2020) (N = 
103,260). We restricted the analytic sample to students who 
had placement test scores (N = 69,301), so that we could 
include the TSI score as a proxy for math ability.1 In the final 
analytic sample, 1% of students took module-based dev-ed 
math or multiple corequisite math courses in the same term, 
which resulted in two or more dev-ed math attempts in the 
same semester as the college-level course. Thus, the final 
analytic sample captured 70,026 corequisite dev-ed course 
enrollments among 69,301 students between fall 2018 and 
spring 2020.

Variables

Our main independent variables of interest capture coreq-
uisite math course structures and characteristics. For the col-
lege-level math course, we included class size, instructional 
modality, an indicator of mixed-ability composition (mix of 
developmental and college-ready students), and math path-
way: college algebra, math for business, quantitative reason-
ing, and statistics. For the developmental-level math course, 
we used measures of class size, semester credit hours, instruc-
tional modality, whether the course was lecture based (as 
opposed to a lab or independent study), and whether the col-
lege-level course was taught by the same instructor as the 
developmental course.2 We also captured four categories of 
dev-ed support courses based on the timing and duration of 
support: full-term concurrent, compressed concurrent, embed-
ded prerequisite, and “boot camp” prerequisite (where the 
boot camp prerequisite is shorter than the embedded prerequi-
site, but both occur before the college-level course).

We also capture characteristics of developmental math 
course instructors, including gender, race/ethnicity, age, fac-
ulty type (NTT vs. TT) and employment intensity, educa-
tional attainment, and 9-month salary.3 Our regression 
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models include student characteristics and academic and 
financial background information as statistical controls. For 
example, we used math placement scores as a proxy for stu-
dent ability. Because some students had non-TSI placement 
scores, we calculated each student’s z-score on the place-
ment test taken. Appendix A includes definitions and 
descriptive statistics for variables used in our main and sup-
plemental analytic models.

We focus on five separate outcome measures that capture 
student performance in the college-level course and subse-
quent college outcomes. We created measures for passing the 
college-level math course (as opposed to either failing or 
withdrawing) and withdrawing from it (as opposed to persist-
ing to the end of the course). To measure academic progress, 
we captured whether students persisted into the subsequent 
semester and into the subsequent year and whether they 
transferred to a 4-year institution within 1 year. We ran analy-
ses for several additional outcomes, including dev-ed math 
course outcomes, subsequent math course enrollment, and 
major switching, which we present in Appendix B.

Analytic Approach

To understand the structure and characteristics of coreq-
uisite coursework implemented at Texas community col-
leges (Research Question 1), we leveraged descriptive 
statistics. We then used logistic regression, given the dichot-
omous nature of our dependent variables, to examine which 
variables predict student outcomes while controlling for stu-
dent background (Research Question 2).

We used the following model for student i at college j in 
semester t:

Logit ( ) ....p b b X b X b Xijt n n j t= + + + + + +0 1 1 2 2 ξ λ ,

where p
ijt

 is the probability of a discrete outcome’s occur-
ring, b

0
 is the intercept, X

1
 to X

n
 are the independent vari-

ables, b
1
 to b

n
 are the associated regression weights, ξ

j
 is a 

college fixed effect, and λ
t
 is a semester fixed effect. The 

logit transformation ensures that the predicted probability of 
the outcome’s occurring lies within the 0-to-1 bound. This 
approach allows for a more realistic representation of the 
curvilinear association because of the dichotomous outcome 
variable, and it tends to linearize the association between the 
predicted outcome and the set of predictors (Raudenbush & 
Bryk, 2002). We included college and semester fixed effects 
to control for other sources of between-college variation and 
factors changing each semester.

Because we rely on regression, the results do not rep-
resent causal relationships. When we use observational 
data, a regression with rich covariates is our strongest 
analytic strategy for examining which course features 
predict student success. We included a variety of  
control variables capturing student and instructor back-
ground; nevertheless, the estimated relationships could 

still partially be explained by unobserved factors. Several 
factors we expect to predict course selection and student 
outcomes, such as student motivation, social networks, 
and instructional quality, are unobservable in the data. 
Thus, the results are correlations that partially reflect 
sorting into specific courses (i.e., some students are more 
inclined to enter a given math course type than others, and 
those unobserved characteristics may also predict subse-
quent academic outcomes). Despite these limitations, the 
results stand to inform the extant literature on corequisite 
implementation.

Results

Description of Corequisite Math Coursework

We begin by describing, in Table 1, course and instructor 
characteristics for the developmental and college-level 
courses within community colleges’ corequisite offerings 
since HB2223. The average developmental-support course 
was larger than the college-level course (by about 1.5 stu-
dents) and worth fewer credits. Both courses were predomi-
nantly lecture based (95% of college-level courses and 77% 
of dev-ed courses) and taught in person. Over one half of the 
paired college-level and developmental-support courses 
were taught by the same instructor. Colleges primarily 
offered dev-ed math corequisite courses that ran concur-
rently with the college-level course. Most—88%—of the 
dev-ed support courses were run as full-term concurrent 
courses: Students co-enrolled in the support course and col-
lege-level math course throughout the semester. The remain-
ing dev-ed support courses were structured as compressed 
concurrent dev-ed (6% coincided with the college-level 
course but were shorter in duration) and embedded prerequi-
sites (5% of dev-ed courses preceded the college-level 
course within the same term). Very few courses (approxi-
mately 1%) were set up as boot camp prerequisites, where 
the developmental course occurred before the college-level 
course and lasted less than 2 weeks. Nearly one half of the 
college-level courses were college algebra, with the remain-
der offered as QR and statistics and, less often, math for 
business.

In addition to corequisite course structures and charac-
teristics, Table 1 describes instructor characteristics. Over 
one half of all courses were taught by female instructors, 
and the racial-ethnic representations looked fairly similar 
across both course types, with White faculty teaching 
approximately 61% of courses. The age of instructors was 
also similar, with an average age of 50. Only 17% to 18% of 
instructors were TT or tenured in either course type. The 
majority of instructors for both courses were NTT, where 
the bulk of instructors were full-time NTT (48.3% for dev-
ed and 52.5% for college level). A larger portion of dev-ed 
instructors than of college-level instructors were part-time 
NTT (27% and 20%, respectively). The educational 
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backgrounds of instructors differed across college-level and 
dev-ed courses. A smaller portion of dev-ed instructors held 
a graduate degree (about 80%) compared with college-level 

instructors (about 95%). On average, college-level instruc-
tors earned more, by about $4,000, than dev-ed instructors 
per academic year.

TABLE 1
Descriptive Statistics of Corequisite Math Coursework: Developmental and College-Level Course Characteristics

Variable

Math course level

Dev-ed (% or M) College (% or M)

Course N 6,671 7,290
Course characteristics  
 Class size 15.7 14.2
 Number of credits 2.3 3.0
 Lecture section 76.65% 94.84%
 Instruction modality  
  Face-to-face 88.01% 84.65%
  Online 10.54% 13.47%
  Hybrid 1.45% 1.88%
 Same instructor for paired courses 55.81% 51.59%
 Dev-ed course type  
  Boot camp prerequisite 1.09% —
  Embedded prerequisite 4.96% —
  Compressed concurrent 6.09% —
  Full-term concurrent 87.86% —
 College-level composition  
  Mixed ability — 43.61%
  All dev-ed students — 56.39%
 College-level math pathway  
  Algebra — 49.97%
  Math for business — 12.04%
  Quant reasoning — 19.22%
  Statistics — 18.77%
Instructor characteristics  
 Female 57.40% 53.40%
 Race  
  White 60.58% 61.32%
  Black 10.03% 8.55%
  Hispanic 18.33% 18.74%
  Asian 7.99% 8.68%
  Other 3.07% 2.72%
 Age 50.2 49.9
 Faculty type  
  Tenured 13.58% 14.10%
  Tenure-track 3.42% 4.36%
  Full-time non-tenure-track 48.34% 52.47%
  Part-time non-tenure-track 26.47% 19.56%
  Unknown 8.18% 9.51%
 Highest education level  
  Doctoral degree 9.29% 11.21%
  Master’s degree 70.47% 83.48%
  Bachelor’s degree 17.45% 2.95%
  Associate degree or certificate <1% <1%
  No degree 2.07% 2.13%
 Full-time employed 73.36% 80.26%
 Calculated 9-month salary $44,910 $48,770

Note. The table describes characteristics of corequisite math courses and instructors (reported at the course level, where columns 1 and 2 show results for the dev-ed support course 
and college-level course, respectively). We provide means for continuous variables and percentages for categorical measures. The measures of college-level course instructor 
characteristics are not included in the regression models because the majority of corequisites were taught by same instructor. Dev-ed = developmental education.
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Regression Results: Course and College Outcomes

Table 2 presents the results for a series of logistic regres-
sion models predicting college-level course outcomes and 
subsequent college outcomes. For ease of interpretation, we 
present results using average marginal effects (AMEs) rather 
than log-odds or odd ratios; AMEs can be interpreted as the 
change in predicted probability for a one-unit change in the 
independent variable (holding other independent variables at 
their mean). The first and second columns present results 
from regressions on passing or withdrawing from the col-
lege-level math course, and the final three columns present 
results for persistence into next semester, persistence into 
the next year, and transferring to a university within 1 year.

Predictors of college-level math course passing and with-
drawal. Looking at predictors of college-level course out-
comes, we note several patterns. The class size of the 
college-level course appeared to have a small positive asso-
ciation with passing and negative association with with-
drawal—the larger the class size, the more likely students 
were to pass and less likely they were to withdraw. Taking a 
mixed-ability college-level math section was associated 
with a 3-percentage-point increase in the probability of pass-
ing compared with taking a section where all students did 
not meet college-readiness standards. In terms of instruc-
tional modality, students in an online college-level course 
were 8 percentage points less likely to pass the course than 
students in a face-to-face course. Students in hybrid courses, 
however, appeared less likely to withdraw than those in 
face-to-face courses. Finally, the math pathway of the col-
lege-level course was associated with both passing and with-
drawal. Compared with the students taking college algebra, 
taking QR was associated with a 10.7-percentage-point 
increase in the probability of passing the course. Taking 
either QR or statistics, as opposed to algebra, negatively pre-
dicted course withdrawal.

Several developmental course characteristics also pre-
dicted college-level course outcomes. Increased credit 
hours of the dev-ed section positively predicted passing 
the college-level math course (and negatively predicted 
withdrawal), possibly indicating that students benefit 
from more time-intensive developmental support courses. 
Enrolling in a lecture-based dev-ed course, as opposed to 
a lab or independent study, predicted a decrease in with-
drawal from the college-level course. Instructional modal-
ity of developmental courses also predicted college math 
course outcomes, where taking online or hybrid develop-
mental courses, compared with face-to-face courses, was 
associated with a decreased probability of passing col-
lege-level math and an increased probability of course 
withdrawal. Taking corequisite coursework where the 
same instructor taught the college-level math and the dev-
ed math support courses was associated with a 3.7-per-
centage-point increase in the probability of passing 

college-level math and 1.9-percentage-point decrease in 
the probability of withdrawing, compared with a corequi-
site model in which the paired courses were taught by 
different instructors. Finally, the timing and duration of 
the developmental support course (dev-ed math course 
type) did not appear to predict passing college-level math, 
but enrolling in a boot camp–style prerequisite dev-ed 
course was associated with a somewhat lower probability 
of withdrawing from the college-level course than was 
enrolling in a full-term concurrent dev-ed support course.

Regarding developmental instructors’ characteristics, we 
found that those taking the dev-ed support course with a full-
time NTT instructor experienced a 4.7-percentage-point 
boost in the probability of passing college math compared 
with those taking the course with a tenured professor. (We 
similarly see a decrease in their probability of withdrawal.) 
The “unknown” faculty category was also associated with 
improved passing and decreased course withdrawals. 
Although we cannot avow that all the faculty in that category 
are full-time NTT instructors, we suspect that they are—that 
group largely comprises faculty at a handful of colleges that 
do not classify faculty and have no tenure (although we can 
see that most “unknown” instructors work full-time).

Predictors of persistence and transfer. As we turn to longer-
term outcomes, a prominent predictor of student success was 
whether the student had passed their college-level math 
course. Passing the college-level math course was associated 
with a 30- and 34-percentage-point increase in the probabil-
ity of persisting into the subsequent semester and the follow-
ing year, respectively, and with a 3.8-percentage-point 
increase in the probability of transferring to a university 
within a year.

Although several college-level math and developmental 
course characteristics that predicted short-term success in 
college-level math did not predict persistence and transfer, the 
math pathway of the college-level course and the timing of the 
dev-ed course appeared consequential for those outcomes. 
Taking QR or statistics, compared with algebra, negatively 
predicted persistence and vertical transfer, though the 
observed pattern for statistics was significant only for persis-
tence into the next year. Students in math for business were 
more likely to persist into the subsequent year than algebra 
students, but the relationship was no longer significant a year 
out. The timing of the developmental support course appeared 
to predict persistence in college, where the embedded prereq-
uisite and compressed concurrent models positively predicted 
persistence into the next term, compared with a full-term con-
current dev-ed course structure. The relationships are no lon-
ger significant (and, for compressed concurrent, actually 
reverse direction) for the outcome capturing persistence into 
the next year. Boot camp–style prerequisites appeared more 
negatively related to transferring to a 4-year institution within 
1 year, compared with full-term concurrent dev-ed.
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TABLE 2
Regression Model Predicting Student Outcomes

Variable

College-level math course Persistence and transfer

Passed 
the course

Withdrew 
from the course

Persistence into the 
subsequent semester

Persistence into the 
subsequent year

Transfer to a 4-year 
institution within 1 year

AME
(SE)

AME
(SE)

AME
(SE)

AME
(SE)

AME
(SE)

Passed the college-level 
math coursea

0.298***
(0.006)

0.342***
(0.007)

0.038 ***
(0.003)

College-level course 
characteristics

 

 Class size 0.002**
(0.001)

–0.002***
(0.001)

0.000
(0.000)

0.000
(0.001)

0.000
(0.000)

 Mixed ability 0.029*
(0.013)

–0.012
(0.007)

0.006
(0.009)

0.014
(0.014)

–0.002
(0.005)

 Instruction modality 
(ref. face-to-face)

 

  Online –0.080**
(0.029)

0.014
(0.014)

–0.011
(0.012)

–0.014
(0.017)

0.009
(0.007)

  Hybrid 0.070
(0.043)

–0.085**
(0.021)

0.019
(0.024)

0.017
(0.030)

0.001
(0.017)

 Math pathway (ref. 
algebra)

 

  Math for business –0.003
(0.016)

0.004
(0.017)

0.014*
(0.006)

0.005
(0.008)

0.007
(0.005)

  Quantitative 
reasoning

0.107***
(0.013)

–0.080***
(0.006)

–0.048***
(0.008)

–0.066***
(0.011)

–0.014***
(0.004)

  Statistics 0.005
(0.015)

–0.016*
(0.008)

–0.012
(0.007)

–0.028***
(0.008)

–0.001
(0.004)

Dev-ed support course 
characteristics

 

 Class size 0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

 Number of credits 0.016*
(0.008)

–0.011**
(0.004)

–0.013
(0.008)

–0.014
(0.008)

0.000
(0.003)

 Lecture section 0.017
(0.024)

–0.037*
(0.018)

–0.002
(0.012)

–0.015
(0.014)

0.002
(0.006)

 Instruction modality 
(ref. face-to-face)

 

  Online –0.054*
(0.026)

0.028*
(0.014)

0.014
(0.012)

0.009
(0.017)

0.006
(0.007)

  Hybrid –0.127***
(0.032)

0.112***
(0.034)

–0.012
(0.019)

0.040
(0.027)

0.019
(0.019)

 Same instructor 0.037*
(0.015)

–0.019*
(0.009)

–0.010
(0.012)

–0.008
(0.014)

–0.001
(0.003)

 Dev-ed course type 
(ref. full-term 
concurrent)

 

  Boot camp 
prerequisite

0.039
(0.041)

–0.064*
(0.026)

0.028
(0.026)

–0.012
(0.042)

–0.033*
(0.009)

  Embedded 
prerequisite

–0.007
(0.050)

–0.032
(0.031)

0.085*
(0.033)

0.003
(0.024)

–0.015
(0.006)

  Compressed 
concurrent

0.013
(0.022)

–0.014
(0.016)

0.129**
(0.032)

–0.036*
(0.015)

–0.008
(0.005)

Dev-ed support 
course instructor 
characteristics

 

(continued)
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Variable

College-level math course Persistence and transfer

Passed 
the course

Withdrew 
from the course

Persistence into the 
subsequent semester

Persistence into the 
subsequent year

Transfer to a 4-year 
institution within 1 year

AME
(SE)

AME
(SE)

AME
(SE)

AME
(SE)

AME
(SE)

 Female 0.015
(0.011)

-0.006
(0.007)

0.006
(0.004)

0.009
(0.005)

0.001
(0.002)

 Race (ref. White)  
  Black –0.003

(0.017)
0.000

(0.012)
0.000

(0.007)
0.004

(0.008)
0.000

(0.005)
  Hispanic 0.024

(0.017)
–0.016
(0.011)

–0.009
(0.006)

–0.008
(0.009)

–0.007
(0.004)

  Asian –0.017
(0.016)

0.005
(0.007)

0.002
(0.007)

0.010
(0.009)

–0.008
(0.007)

  Other –0.064***
(0.018)

0.031*
(0.015)

–0.016
(0.011)

0.001
(0.010)

–0.016
(0.012)

 Age 0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000*
(0.000)

 Faculty type (ref. 
tenured)

 

  Tenure-track 0.041
(0.036)

–0.035
(0.022)

–0.009
(0.011)

0.011
(0.014)

–0.011
(0.007)

  Full-time non-
tenure-track

0.047**
(0.018)

–0.037**
(0.012)

–0.005
(0.008)

–0.011
(0.011)

0.009
(0.006)

  Part-time non-
tenure-track

0.048
(0.026)

–0.025
(0.017)

–0.021
(0.014)

–0.015
(0.016)

–0.007
(0.011)

  Unknown 0.058*
(0.027)

–0.049**
(0.017)

–0.005
(0.010)

0.006
(0.013)

0.003
(0.006)

 Highest education 
level (ref. no degree)

 

  Doctoral degree 0.004
(0.029)

0.005
(0.023)

0.005
(0.024)

–0.019
(0.028)

–0.002
(0.008)

  Master’s degree 0.002
(0.023)

–0.001
(0.022)

0.004
(0.023)

–0.012
(0.023)

0.002
(0.006)

  Bachelor’s degree 0.002
(0.026)

0.002
(0.023)

0.010
(0.023)

0.000
(0.025)

0.000
(0.007)

  Associate degree 0.014
(0.035)

0.005
(0.054)

–0.050
(0.042)

–0.015
(0.035)

–0.013
(0.016)

 Calculated 9-month 
salary

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Sample size 70,026 70,019 70,026 52,307 52,029

Note. Table presents full logistic regression results, where each column represents a separate logistic regression model. All models included the following student characteristics: 
gender, race/ethnicity, age, major, financial aid application, Pell grant recipient, enrollment intensity, first time in college, and a z-score for their math placement test score. 
All models also included semester and college fixed effects and used robust standard errors clustered by semester and college. We present average marginal effects (AME) 
and standard errors (SE) for each covariate included in the binary logistic regression models. For statistical significance tests, we rely on raw p values in the table. To adjust 
for multiple comparisons across regression models, we also estimated Benjamini et al.’s (2006) sharpened q values, following guidance from Anderson (2008), and present the 
results in Appendix D. The first three analyses included the entire sample, and the subsequent analyses excluded students in spring 2020 from the analytic sample because the 
follow-up data have not yet been released to capture outcomes after 1 year. The sample size across outcomes varies slightly because of the inclusion of both semester and college 
fixed effects, where some colleges with no variation in a given outcome (e.g., course withdrawal and transfer) during a given term were dropped from those analyses. For ease 
of interpretation, the sample means for the outcomes of interest in each of the five regressions are passed college math: 0.613; withdrew from college math: 0.171; persistence 
next semester: 0.741; persistence next year: 0.558; transfer: 0.047. Ref. = reference.
a“Passed the college-level math course” is included as an independent variable only in regressions on persistence and transfer outcomes.
*p < .05. **p < .01. ***p < .001.

TABLE 2 (CONTINUED)

We also examined whether developmental course instruc-
tor characteristics were associated with the probabilities of 
persistence and transfer, but the results yielded no notable 

significant patterns. In Appendix B we present results for 
additional outcomes, including developmental course out-
comes, math course taking, and major choice.
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Discussion

Over the past few years, colleges across the country 
began to revise decades-old approaches to dev-ed. Faced 
with pressure to implement corequisite reforms, college 
administrators and faculty need evidence for how to build 
effective course pairings of introductory college-level math 
and corequisite developmental support. In this article, we 
used administrative data from Texas to illustrate how col-
leges structured corequisite coursework in response to a 
statewide mandate and how different corequisite course 
characteristics and structures predict student outcomes.

For the most part, our results suggest that, among stu-
dents taking corequisite coursework, some course design 
decisions moderately improve passing rates of college-level 
math but do not trickle down to longer-term outcomes, like 
persistence and transfer. Our results suggest that mixed-abil-
ity college-level math classes boost pass rates for students 
who tested as not college ready, which presents an action-
able approach colleges might consider when designing 
corequisite coursework. Other characteristics, like course 
modality, are also linked improvements in course outcomes, 
though it is unclear whether those results are driven by selec-
tion (i.e., students in face-to-face vs. online courses, or in 
different math pathways, likely differ systematically in a 
way that may not be captured in our models). Experiencing 
the college-level math course face-to-face is associated with 
higher pass rates than taking the course online, although 
hybrid modality may boost course retention (though we 
should note that hybrid courses made up a very small pro-
portion in our sample and may not be representative of 
hybrid courses generally).

The math pathway of the college-level course significantly 
predicts course outcomes and subsequent college outcomes, 
whereas other college-level course characteristics do not appear 
to explain the longer-term college outcomes, but we anticipate 
that students’ differential selection into math pathway may also 
play a role in these observed relationships. Taking QR, com-
pared with taking algebra, is positively associated with passing 
college math but negatively associated with persistence and 
vertical transfer. Taking statistics is also associated with a 
decrease in the probability of persistence into the subsequent 
year. Students in math for business, however, are more likely to 
persist into the next term than those who take algebra, though 
the relationship diminishes by the subsequent term. Overall, our 
results suggest that students in the college algebra pathway are 
more likely to persist in college than those in other pathways. 
Our supplemental analyses (see Appendix B) suggest they are 
also more likely to switch into STEM majors and to enroll in 
advanced math coursework. Ran and Lin (2019) similarly 
reported that students in non-algebra corequisite coursework 
experienced a larger boost in passing college-level math than 
those in algebra, with minimal long-term impacts. In their study 
of corequisite statistics coursework, Logue and colleagues 

(2016, 2019) observed both greater short-term improvements in 
course outcomes and longer-term benefits for credit accrual and 
degree attainment than in the traditional prerequisite algebra 
course. Although our results suggest that non-algebra corequi-
site coursework is correlated with higher passing rates than 
algebra corequisites, it is possible that the statistical model does 
not fully capture selection into math pathways; we also expect 
there could be differences in student support structures and sub-
sequent course sequences across math pathways that are corre-
lated with persistence and transfer. Selection into and impacts 
of math pathways are beyond the scope of our study, but we 
hope these results spur relevant future research.

Our regression results suggest that developmental sup-
ports also shape student outcomes in the college-level 
course. The number of credits for the dev-ed support course 
is positively associated with passing the college-level course. 
Likewise, face-to-face instruction and taking a lecture-based 
course also appear to boost success in the college-level math 
course.

Structuring corequisite coursework to use the same 
instructor across both courses positively predicts passing 
and persisting in the college-level course. Although we can-
not know the mechanism driving this result, it is possible 
that when the two courses have the same instructor, the con-
tent is better aligned (Daugherty et al., 2018). Taking the 
developmental course with a full-time NTT instructor 
appears to positively predict passing the college-level course 
and course retention. Although we cannot discern experi-
ence teaching dev-ed from the administrative data we have 
access to, prior research (e.g., Datray et al., 2014; Daugherty 
et al., 2018) and our ongoing interviews in the field suggest 
that NTT instructors, especially those appointed full-time, 
have historically taught dev-ed courses. We hope that future 
research can capture the role teaching experience plays in 
student outcomes and can delineate between how prior expe-
rience teaching dev-ed intersects with conditions of having 
paired instructors.

Corequisite course design decisions appear to shape 
immediate student outcomes, such as persisting in and 
passing their required college-level math course. Our 
study offers a first look at how Texas community col-
leges, which educate 12% of the nation’s public-2-year-
college students (Snyder et al., 2019), implemented a 
statewide mandate for corequisites. By fall 2019 (the 
second fall cohort in our analytic sample), one half of all 
developmental math students were enrolled in the coreq-
uisite courses we examined. Our results suggest that 
some course design elements, such as mixed-ability 
classes for the college-level course, higher credit loads 
(as opposed to one-credit courses) for the dev-ed coreq-
uisite support course, and using the same instructor 
across both the college-level and dev-ed courses, 
improve immediate outcomes for students. The relation-
ships we illuminate offer insights for policymakers, 
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administrators, and practitioners seeking evidence for 
how to put corequisite models into practice.
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Notes

1. About one third of the population of interest lacked Texas 
Success Initiative (TSI) scores, a result that aligns with prior 
research (e.g., Meiselman & Schudde, 2021; Schudde & Keisler, 
2019). These scores may be missing because students did not plan 
to enroll in any math courses in their first semester or their ini-
tial degree plan did not require math (e.g., certificates or techni-
cal associate degrees). For a further discussion of placement score 
missingness in Texas, see Schudde and Meiselman (2020). We 
ran supplemental models on the restricted sample (those with test 
scores) and full sample (those with and without TSI scores) and 
present the results in Appendix C.

2. We relied on an indicator of instruction type, capturing 
whether a section is lecture based (vs. lab or tutoring), instead of 
course prefixes suggesting a section is a non-course-based-option 
(NCBO) because several colleges designated all their dev-ed 
courses with NCBO prefixes despite variation in the instruction-
type measure. We spoke with faculty at some of the departments to 
confirm that instruction type varied, informing our decision to not 
rely on the NCBO course prefix.

3. In supplemental analyses (available upon request), we cap-
tured college-level instructor characteristics. Given that the major-
ity of paired courses are taught by the same instructor (see Table 
1), we focus on characteristics of developmental faculty in our 
descriptives and regression models.
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