

Community College Math in California's New Era of Student Access

Technical Appendices

CONTENTS

Appendix A.	Data
Appendix B.	Figures and Tables
Appendix C.	Qualitative Interview Analysis
Appendix D.	Interrupted Time Series Analysis
Appendix E.	Corequisite Remediation Analysis
Appendix F.	What happened to students who started and did not succeed in their first TL math attempt?

Marisol Cuellar Mejia, Olga Rodriguez, Hans Johnson, and Cesar Alesi Perez

Supported with funding from the William T. Grant Foundation, the Bill and Melinda Gates Foundation, and the Sutton Family Fund

Appendix A. Data

Student Longitudinal Data

Our quantitative analyses use student-level longitudinal data from the California Community Colleges Chancellor's Office Management Information System (MIS). The dataset includes students enrolled across the 115 community colleges that comprise the California Community College system, and includes demographic information, transcripts (grades and credits earned), and course elements (levels below transfer-level, credit status, transfer status and minimum/maximum number of credits).

Please see the glossary of terms in the main report for a description of key variables derived from the MIS data.

Variables

<u>Outcomes</u>: Direct access to TL, one-term, one-year, and fall-fall throughput, subsequent enrollment in TL courses, subsequent success in TL courses, persistence, and racial equity gaps (percentage point gap and proportionality index).

<u>Student-level variables</u>: student goal, first-time college student, non-traditional-age student, gender, race/ethnicity, citizenship status, disability status, Limited English Proficiency status, College Promise or Pell grant recipient, full-time status, foster student, EOPS recipient, prior dual-enrollment, targeted program participation, GPA first-term (excluding math), TL units earned first-term as a share of units attempted, BSTEM major status, enrollment in corequisite support.

<u>College-level variables</u>: access rate tier, early implementer status, corequisite intensity, BSTEM pathway length, and an indicator of whether a college was implementing a placement policy that deviated from the system office recommendations

Programs coded as BSTEM

We identified students' majors by matching program information from the Chancellor's Office Curriculum Inventory System (COCI) with program codes provided by MIS. Possible BSTEM majors were then flagged using Taxonomy of Programs (TOP) codes and subsequent word searches, which included terms commonly found in BSTEM major titles such as "Engineering" and "Computer Science."1 We then verified BSTEM identifications through a general examination of course requirements for each TOP Code. Of primary interest was the identification of majors with calculus sequence requirements.

Specifically, we chose a random sample of majors within each TOP code, and gathered information on course requirements for these majors from department websites, course schedules, and college catalogs. In some cases, within certain TOP codes, we chose to flag only a few majors as BSTEM. For example, among TOP codes categorized under interdisciplinary studies, including Liberal Arts and Sciences, General (4901.00), Transfer Studies (4901.10), and Liberal Studies (4901.20), we only flagged majors explicitly listed as math, physical science, engineering, or computer science programs. Similarly, when examining majors broadly categorized under business TOP codes, we only flagged those identified as "Business Administration" programs.

Given the constraints of our methodology, and the wide variation in majors across colleges within TOP codes, it is likely that we did not appropriately identify all BSTEM majors as such in our analyses. Nevertheless, we are

¹ The Taxonomy of Program (TOP) is a system of numerical codes used by the California Community Colleges system to collect and report information on similar programs across different colleges throughout the state (https://bit.ly/TOP-Code-Manual).

confident that our multi-step identification process resulted in an accurate classification of majors within the BSTEM sample. Furthermore, our BSTEM categorizations match up closely with the STEM categorizations developed in a recent report by the RP Group. Most importantly, our report similarly includes the identification of what the RP Group classifies as the 16 most concentrated STEM TOP codes in the California community college system, which account for over 96% of the student sample in their report.

Table A1 lists the TOP codes we categorized as BSTEM in our report, and provides frequency data for all firsttime math students among the fall 2019 cohort. TOP codes for which we categorized only some majors as BSTEM are identified as such. Overall, most of first-time math students we identified as BSTEM majors (about 96%) fall into one of the following six broad areas of study:

- Biological & Physical Sciences (37.9%)
- Business (28.7%)
- Information Technology (13.4%)
- Engineering (11.7%)
- Mathematics (4.1%)

TABLE A1

List of TOP Codes identified as BSTEM with frequency distribution among sample of first-time math students in fall 2019

TOP Title	TOP Code	BSTEM Majors	Count	Percent
Business Administration	0505.00	All	11,107	22.92%
Biology, General	0401.00	All	8,879	18.32%
Biological and Physical Sciences (and Mathematics)	4902.00	Some	7,503	15.48%
Engineering, General (requires Calculus) (Transfer)	0901.00	All	3,914	8.08%
Computer Science (Transfer)	0706.00	All	3,067	6.33%
Business and Commerce, General	0501.00	Some	2,319	4.79%
Mathematics, General	1701.00	All	1,970	4.07%
Computer Programming	0707.10	All	1,683	3.47%
Chemistry, General	1905.00	All	879	1.81%
Computer Information Systems	0702.00	All	741	1.53%
Architecture and Architectural Technology	0201.00	All	713	1.47%
Economics	2204.00	All	708	1.46%
Physics, General	1902.00	All	518	1.07%
Computer Networking	0708.10	All	429	0.89%
Electronics and Electric Technology	0934.00	All	423	0.87%
Engineering Technology, General (requires Trigonometry)	0924.00	All	352	0.73%
Drafting Technology	0953.00	All	318	0.66%
Biotechnology and Biomedical Technology	0430.00	All	287	0.59%
Business Management	0506.00	Some	226	0.47%
Information Technology, General	0701.00	All	176	0.36%
Liberal Arts and Sciences, General	4901.00	Some	172	0.35%
Civil and Construction Management Technology	0957.00	All	171	0.35%

TOP Title	TOP Code	BSTEM Majors	Count	Percent
Environmental Science	0301.00	All	167	0.34%
Liberal Studies	4901.20	All	162	0.33%
Computer Electronics	0934.10	All	158	0.33%
Transfer Studies	4901.10	Some	126	0.26%
Geology	1914.00	All	117	0.24%
Physical Sciences, General	1901.00	All	101	0.21%
Software Applications	0702.10	All	97	0.20%
Other Engineering and Related Industrial Technologies	0999.00	All	92	0.19%
Architectural Drafting	0953.10	All	88	0.18%
Computer Infrastructure and Support	0708.00	All	87	0.18%
Management Development and Supervision	0506.30	Some	78	0.16%
Computer Systems Analysis	0707.30	All	60	0.12%
Computer Software Development	0707.00	All	59	0.12%
Small Business and Entrepreneurship	0506.40	Some	51	0.11%
Accounting	0502.00	Some	49	0.10%
Astronomy	1911.00	All	48	0.10%
Computer Support	0708.20	All	46	0.09%
Mechanical Drafting	0953.40	All	32	0.07%
Banking and Finance	0504.00	Some	31	0.06%
Other Business and Management	0599.00	Some	30	0.06%
Manufacturing and Industrial Technology	0956.00	Some	30	0.06%
Electro-Mechanical Technology	0935.00	All	24	0.05%
Microbiology	0403.00	All	21	0.04%
Electrical, Electronic, and Electro-Mechanical Drafting	0953.30	All	20	0.04%
Database Design and Admnistration	0707.20	All	19	0.04%
Electrical Systems and Power Transmission	0934.40	All	17	0.04%
Other Information Technology	0799.00	All	12	0.02%
Ocean Technology	1920.00	All	12	0.02%
Laboratory Science Technology	0955.00	All	11	0.02%
Oceanography	1919.00	All	11	0.02%
Earth Science	1930.00	All	11	0.02%
Telecommunications Technology	0934.30	All	10	0.02%
Surveying	0957.30	All	10	0.02%
Civil Drafting	0953.20	All	9	0.02%
Electron Microscopy	0934.70	All	8	0.02%
Landscape Architecture (Transfer)	0201.10	All	1	0.00%
Chemistry for UC Transfer	1905.00	All	1	0.00%

SOURCE: Authors' calculations using MIS data, COCI program information, and TOP code identifications NOTE: Sample includes all first-time math students among 2019 fall cohort.

Caveats and Limitations of this Study

- 1. The accuracy of our results relies on the accuracy with which colleges report their information to the Chancellor's Office. While we used various approaches to identify colleges with inconsistent data, it is possible that we missed colleges where the data discrepancies were not stark.
- 2. The MIS database does not include data on placement, so we are unable to identify students who were referred to developmental education or to transfer-level courses, with or without co-requisite support. We similarly do not have information on students' high school performance measures (i.e. course taking history, course grades, or GPA). As a result, our analysis focuses exclusively on course-taking behavior once students reach community college.
- 3. Our ITS analysis, discussed more thoroughly in Appendix D, is limited to only one student cohort post-AB 705. Unfortunately, cohorts entering after spring 2020 were impacted by the COVID-19 pandemic and thus, any results after that term cannot be interpreted as causal.
- 4. A critical question we attempt to answer is whether students who start in transfer-level courses with corequisite support have better outcomes than those who start in traditional developmental sequences. Since we do not have high school records, or assessment and placement information, we cannot directly assess whether prior academic preparedness drives our results. We further discuss this limitation in our analysis of corequisite courses in Appendix E.
- 5. Our focus in Appendix E is strictly on corequisite models because we are not yet able to consistently identify and measure participation in other forms of concurrent support (e.g., writing labs, tutoring centers, supplemental instruction).
- 6. The analysis of persistence and success in subsequent courses for the 2019 cohort is impacted by the pandemic and therefore its results should be interpreted with caution.

Appendix B. Figures and Tables

FIGURE B1

Number of first-time math students starting in a transfer-level course over time

SOURCE: Authors' calculations using MIS data. NOTE: Fall of each year.

FIGURE B2

Distribution of first-time math students starting in a transfer-level course by race/ethnicity

SOURCE: Authors' calculations using MIS data.

NOTE: Fall of each year. In the fall 2020 cohort (128,471 students), there were 16,457 Asian, 5,716 Black, 63,997 Latino, and 29,257 white first-time math students.

FIGURE B3

Identifying colleges with increases in the number of students starting in a transfer-level course

SOURCE: Authors' calculations using MIS data.

NOTES: Annual change between fall 2019 and fall 2020. In the colleges in the upper-left quadrant, the number of students going into transfer-level math increased despite there being fewer first-time math takers.

TABLE B1

Number of first-time math students starting in a below transfer-level course by college (sorted by percent change 2019-20)

	2018 (pre-AB 705)	2019 (post AB705)	2020 (pandemic)	Percent change 2019-20	Absolute change 2019-20	Percent change 2018-19
IMPERIAL VALLEY	983	109	284	161	175	-89
L.A. CITY	1,063	131	277	111	146	-88
CANYONS	1,242	180	292	62	112	-86
GOLDEN WEST	748	76	121	59	45	-90
WEST L.A.	667	116	173	49	57	-83
LANEY	309	108	160	48	52	-65
ORANGE COAST	1,388	160	223	39	63	-88
SANTA BARBARA CITY	772	99	132	33	33	-87
FRESNO CITY	1,767	234	308	32	74	-87
SAN DIEGO CITY	1,136	378	496	31	118	-67
L.A. MISSION	740	144	188	31	44	-81
BAKERSFIELD	1,469	369	457	24	88	-75
EAST L.A.	1,979	994	1,220	23	226	-50
BERKELEY CITY	307	35	42	20	7	-89
PALO VERDE	134	10	12	20	2	-93
MOORPARK	1,047	389	460	18	71	-63
CERRO COSO	285	51	60	18	9	-82

	2018 (pre-AB 705)	2019 (post AB705)	2020 (pandemic)	Percent change 2019-20	Absolute change 2019-20	Percent change 2018-19
SANTA ROSA	1,132	284	327	15	43	-75
MT. SAN JACINTO	1,315	238	270	13	32	-82
GROSSMONT	1,134	316	357	13	41	-72
LASSEN	183	39	44	13	5	-79
NAPA VALLEY	416	143	159	11	16	-66
SOUTHWESTERN	1,408	554	612	10	58	-61
LOS MEDANOS	399	243	268	10	25	-39
CERRITOS	1,667	734	808	10	74	-56
CITRUS	754	110	121	10	11	-85
RIVERSIDE	1,339	151	161	7	10	-89
SISKIYOUS	49	21	22	5	1	-57
SAN JOAQUIN DELTA	1,746	552	575	4	23	-68
COALINGA	291	31	32	3	1	-89
NORCO	580	157	162	3	5	-73
SOLANO	515	192	197	3	5	-63
CYPRESS	1,209	335	343	2	8	-72
DIABLO VALLEY	972	117	119	2	2	-88
FOLSOM LAKE	622	146	145	-1	-1	-77
L.A. PIERCE	1,330	414	409	-1	-5	-69
WOODLAND	327	75	74	-1	-1	-77
CLOVIS	663	171	168	-2	-3	-74
DESERT	724	268	262	-2	-6	-63
MODESTO	781	198	193	-3	-5	-75
COSUMNES RIVER	1,136	505	492	-3	-13	-56
DE ANZA	531	249	238	-4	-11	-53
AMERICAN RIVER	1,492	670	637	-5	-33	-55
SANTA ANA	1,335	174	163	-6	-11	-87
FOOTHILL	139	119	109	-8	-10	-14
L.A. TRADE-TECH	861	309	282	-9	-27	-64
SHASTA	519	271	245	-10	-26	-48
MENDOCINO	325	83	75	-10	-8	-74
SANTIAGO CANYON	623	159	141	-11	-18	-74
MISSION	458	100	87	-13	-13	-78
SADDLEBACK	1,070	248	214	-14	-34	-77
SAN DIEGO MESA	840	424	363	-14	-61	-50
MT. SAN ANTONIO	1,648	820	701	-15	-119	-50
MERCED	1,026	617	524	-15	-93	-40
WEST VALLEY	686	137	116	-15	-21	-80
BUTTE	793	212	178	-16	-34	-73
CUESTA	506	236	196	-17	-40	-53
VENTURA	779	112	93	-17	-19	-86
YUBA	585	207	171	-17	-36	-65

	2018 (pre-AB 705)	2019 (post AB705)	2020 (pandemic)	Percent change 2019-20	Absolute change 2019-20	Percent change 2018-19
HARTNELL	708	304	250	-18	-54	-57
SANTA MONICA	2,404	928	754	-19	-174	-61
TAFT	275	175	142	-19	-33	-36
PALOMAR	1,629	1,010	816	-19	-194	-38
SACRAMENTO CITY	1,292	521	418	-20	-103	-60
GLENDALE	786	742	595	-20	-147	-6
L.A. VALLEY	1,370	331	262	-21	-69	-76
LONG BEACH CITY	1,972	1,309	1,036	-21	-273	-34
MORENO VALLEY	628	146	115	-21	-31	-77
CRAFTON HILLS	322	147	114	-22	-33	-54
LEMOORE	407	115	88	-23	-27	-72
OHLONE	796	185	141	-24	-44	-77
MONTEREY	492	142	107	-25	-35	-71
SAN JOSE CITY	511	112	84	-25	-28	-78
COASTLINE	435	207	153	-26	-54	-52
MIRA COSTA	536	163	116	-29	-47	-70
CONTRA COSTA	441	252	174	-31	-78	-43
SAN MATEO	429	106	73	-31	-33	-75
SOUTHWEST L.A.	594	110	75	-32	-35	-81
REDWOODS	235	27	18	-33	-9	-89
SAN FRANCISCO CITY	1,125	527	351	-33	-176	-53
SAN DIEGO MIRAMAR	490	337	220	-35	-117	-31
EL CAMINO	2,396	367	236	-36	-131	-85
ALLAN HANCOCK	895	507	322	-36	-185	-43
ANTELOPE VALLEY	1,515	656	414	-37	-242	-57
BARSTOW	290	45	28	-38	-17	-84
FULLERTON	1,551	609	377	-38	-232	-61
IRVINE VALLEY	799	140	81	-42	-59	-82
СНАВОТ	759	182	102	-44	-80	-76
RIO HONDO	1,384	348	188	-46	-160	-75
COLUMBIA	136	62	33	-47	-29	-54
CUYAMACA	163	111	58	-48	-53	-32
CANADA	291	133	68	-49	-65	-54
LAKE TAHOE	115	92	47	-49	-45	-20
L.A. HARBOR	792	222	111	-50	-111	-72
SKYLINE	289	194	91	-53	-103	-33
LAS POSITAS	524	160	74	-54	-86	-69
MERRITT	246	26	12	-54	-14	-89
FEATHER RIVER	119	61	28	-54	-33	-49
GAVILAN	315	229	104	-55	-125	-27
SAN BERNARDINO	1,568	884	377	-57	-507	-44
SIERRA	884	368	154	-58	-214	-58

	2018 (pre-AB 705)	2019 (post AB705)	2020 (pandemic)	Percent change 2019-20	Absolute change 2019-20	Percent change 2018-19
COMPTON	521	226	78	-65	-148	-57
MARIN	381	58	19	-67	-39	-85
CHAFFEY	2,046	563	132	-77	-431	-72
CABRILLO	769	253	56	-78	-197	-67
EVERGREEN VALLEY	876	568	88	-85	-480	-35
ALAMEDA	163	42	5	-88	-37	-74
REEDLEY	936	30	0	-100	-30	-97
SEQUOIAS	1,571	34	0	-100	-34	-98
VICTOR VALLEY	1,375	145	0	-100	-145	-89
PASADENA CITY	1,219	0	0	N/A	N/A	N/A
PORTERVILLE	387	0	0	N/A	N/A	N/A
OXNARD	580	N/A	249	N/A	N/A	N/A
COPPER MOUNTAIN	189	89	N/A	N/A	N/A	-53
MADERA	N/A	N/A	69	N/A	N/A	N/A
Total	94,865	30,024	25,461	-15	-4,563	-68

NOTES: Fall of each year. Data for Copper Mountain College for the fall 2020 term and for Oxnard College for the fall 2019 term was not available in the MIS. Madera is the newest community college in the system that is why 2018 and 2019 data are missing. This table is sorted in descending order of the percent change between fall 2019 and fall 2020 in the number of first-time students starting in a BTL course. N/A is not applicable or not available.

Share of first-time credit students who take a math course on their first term and as of the next fall

SOURCE: Authors' calculations using MIS data.

NOTE: Restricted to transfer-intending students. First-time credit students are students who took their first credit course in the CCC system in the fall of each year. For example, there were 118,316 first-time transfer intending credit students in fall 2020. Of those students, 46% (or 54,879 students) took a math course during their first term in a community college.

FIGURE B5

Share of first-time credit students who take a math course on their first term by race/ethnicity

SOURCE: Authors' calculations using MIS data.

NOTE: Restricted to transfer-intending students. First-time credit students are students who took their first credit course in the CCC system in the fall of each year.

TABLE B2

First-time math students starting in corequisite models by race/ethnicity, fall 2020

	Starting in corequisite models	All first-time math students	Distribution in corequisite models (%)	Distribution all first-time students (%)	Proportiona lity Index	Share students in corequisite models (%)
Asian	2,194	16,457	11	13	0.84	13
Black	1,024	5,716	5	4	1.13	18
Latino	11,221	63,997	55	50	1.11	18
White	3,609	29,257	18	23	0.78	12
Total	20,373	128,471	100	100	1.00	16

First-time math students starting in corequisite models by race/ethnicity, fall 2019

	Starting in corequisite models	All first-time math students	Distribution in corequisite models (%)	Distribution all first-time students (%)	Proportiona lity Index	Share students in corequisite modles (%)
Asian	2,436	18,692	10	13	0.79	13
Black	1,203	6,524	5	5	1.12	18
Latino	13,193	72,825	57	52	1.10	18
White	3,830	28,621	16	20	0.81	13
Total	23,231	141,317	100	100	1.00	16

SOURCE: Authors' calculations using MIS data.

NOTES: The Proportionality Index compares a group's representation with respect to an educational outcome relative to its representation in the entire cohort of analysis. A PI equal to 1 means that the group is equally represented, a PI greater than 1 means that the group is overrepresented, a PI between 0.86 and 0.99 means near equity; and PI of 0.85 means the group is underrepresented.

TABLE B3

First-time math students starting in corequisite models by college, fall 2020

	Students Starting in corequisite models	Students starting in a TL course	All first-time students	Share in corequisite models of those started in TL course (%)	Share in corequisite models of all students in the cohort (%)
VICTOR VALLEY	561	926	926	61	61
MERRITT	92	143	155	64	59
CITRUS	650	1,208	1,329	54	49
ALAMEDA	95	191	196	50	48
SEQUOIAS	633	1,359	1,359	47	47
LASSEN	70	107	151	65	46
EL CAMINO	946	1,934	2,170	49	44
MARIN	90	194	213	46	42
COALINGA	60	112	144	54	42
MODESTO	415	847	1,040	49	40
L.A. HARBOR	222	576	687	39	32
PORTERVILLE	126	390	390	32	32
CYPRESS	519	1,341	1,684	39	31
BERKELEY CITY	137	409	451	33	30
CABRILLO	262	811	867	32	30
SANTA MONICA	887	2,260	3,014	39	29
SAN JOSE CITY	126	367	451	34	28
DIABLO VALLEY	609	2,076	2,195	29	28
NORCO	242	716	878	34	28
EAST L.A.	571	879	2,099	65	27
LOS MEDANOS	334	983	1,251	34	27
IRVINE VALLEY	415	1,484	1,565	28	27
CANADA	103	333	401	31	26
CONTRA COSTA	131	343	517	38	25
LANEY	117	305	465	38	25
CUYAMACA	153	563	621	27	25
ORANGE COAST	547	2,027	2,250	27	24
LEMOORE	86	266	354	32	24
PASADENA CITY	740	3,071	3,071	24	24
RIVERSIDE	487	1,892	2,053	26	24
FRESNO CITY	321	1,053	1,361	30	24
FOLSOM LAKE	220	806	951	27	23
SAN MATEO	154	593	666	26	23
MORENO VALLEY	103	354	469	29	22

	Students Starting in corequisite models	Students starting in a TL course	All first-time students	Share in corequisite models of those started in TL course (%)	Share in corequisite models of all students in the cohort (%)
SOLANO	242	905	1,102	27	22
RIO HONDO	241	911	1,099	26	22
SANTA ANA	292	1,264	1,427	23	20
CANYONS	448	1,925	2,217	23	20
MT. SAN ANTONIO	595	2,271	2,972	26	20
VENTURA	216	1,057	1,150	20	19
SKYLINE	102	466	557	22	18
MT. SAN JACINTO	395	1,891	2,161	21	18
MERCED	235	785	1,309	30	18
YUBA	90	350	521	26	17
REDWOODS	66	371	389	18	17
IMPERIAL VALLEY	131	500	784	26	17
L.A. MISSION	92	373	561	25	16
SACRAMENTO CITY	233	1,008	1,426	23	16
SADDLEBACK	316	1,722	1,936	18	16
OXNARD	115	459	708	25	16
EVERGREEN VALLEY	151	851	939	18	16
AMERICAN RIVER	287	1,239	1,876	23	15
HARTNELL	173	882	1,132	20	15
SAN BERNARDINO	197	951	1,328	21	15
FULLERTON	368	2,211	2,588	17	14
MONTEREY	84	511	618	16	14
COLUMBIA	28	174	207	16	14
WEST VALLEY	117	758	874	15	13
BAKERSFIELD	276	1,617	2,074	17	13
NAPA VALLEY	86	499	658	17	13
SAN FRANCISCO CITY	188	1,100	1,451	17	13
GAVILAN	65	424	528	15	12
GROSSMONT	220	1,457	1,814	15	12
CERRITOS	328	1,910	2,718	17	12
SAN DIEGO MIRAMAR	105	682	902	15	12
LONG BEACH CITY	325	1,857	2,893	18	11
SOUTHWESTERN	220	1,414	2,026	16	11
SAN DIEGO CITY	116	621	1,117	19	10
COASTLINE	43	281	434	15	10
L.A. TRADE-TECH	46	183	465	25	10

	Students Starting in corequisite models	Students starting in a TL course	All first-time students	Share in corequisite models of those started in TL course (%)	Share in corequisite models of all students in the cohort (%)
SANTA ROSA	127	973	1,300	13	10
CRAFTON HILLS	68	618	732	11	9
REEDLEY	44	476	476	9	9
MISSION	44	421	508	10	9
ALLAN HANCOCK	79	598	920	13	9
GLENDALE	117	803	1,398	15	8
SANTIAGO CANYON	96	1,069	1,210	9	8
FOOTHILL	69	787	896	9	8
SAN DIEGO MESA	119	1,203	1,566	10	8
WOODLAND	22	220	294	10	7
MENDOCINO	17	155	230	11	7
SHASTA	54	502	747	11	7
OHLONE	74	883	1,024	8	7
SAN JOAQUIN DELTA	136	1,353	1,928	10	7
PALOMAR	174	1,766	2,582	10	7
WEST L.A.	32	348	521	9	6
DE ANZA	133	2,074	2,312	6	6
MIRA COSTA	77	1,238	1,354	6	6
SANTA BARBARA CITY	110	1,819	1,951	6	6
MOORPARK	108	1,475	1,935	7	6
GOLDEN WEST	66	1,082	1,203	6	5
LAS POSITAS	39	790	864	5	5
СНАВОТ	22	991	1,093	2	2
CUESTA	20	955	1,151	2	2
CHAFFEY	26	1,645	1,777	2	1
COSUMNES RIVER	20	996	1,488	2	1
SIERRA	24	1,959	2,113	1	1
ANTELOPE VALLEY	0	1,002	1,416	0	0
BARSTOW	0	254	282	0	0
BUTTE	0	1,089	1,267	0	0
CERRO COSO	0	306	366	0	0
CLOVIS	0	751	919	0	0
COMPTON	0	95	173	0	0
DESERT	0	1,069	1,331	0	0
FEATHER RIVER	0	111	139	0	0
L.A. CITY	0	1,043	1,320	0	0

	Students Starting in corequisite models	Students starting in a TL course	All first-time students	Share in corequisite models of those started in TL course (%)	Share in corequisite models of all students in the cohort (%)
L.A. PIERCE	0	1,548	1,957	0	0
L.A. VALLEY	0	826	1,088	0	0
LAKE TAHOE	0	77	124	0	0
MADERA	0	122	191	0	0
PALO VERDE	0	165	177	0	0
SISKIYOUS	0	100	122	0	0
SOUTHWEST L.A.	0	222	297	0	0
TAFT	0	232	374	0	0
Total	20,373	103,010	128,471	20	16

NOTES: Fall 2020. Data for Copper Mountain College for the fall 2020 term was not available in the MIS. Table sorted by the share of students starting in a corequisite model among first-time students who started in a transfer-level course. This table is sorted in descending order of the share of students in corequisite models among those who started in a transfer-level course.

FIGURE B6

Share of first-time math students who started in a transfer-level course with corequisite support by subject

■2019 ■2020

Share of first-time students taking the corequisite model (%)

SOURCE: Authors' calculations using MIS data.

NOTE: Fall of each year. Only colleges that offered corequisite remediation in the given subject are included in this calculation.

TABLE B4

Corequisite remediation by math subject, comparison between 2019 and 2020 cohorts

	TL w	ith coreq support	uisite	TL standalone (Colleges with corequisites)		TI (Co c	TL standalone (Colleges without corequisites)			All TL			
	2019	2020	Annual change (%)	2019	2020	Annual change (%)	2019	2020	Annual change (%)	2019	2020	Annual change (%)	
Number of first- time math students													
Applied calculus	384	341	-11	846	763	-10	1,028	883	-14	2,258	1,987	-12	
Finite math	235	246	5	596	479	-20	356	296	-17	1,187	1,021	-14	
Pre-calculus + trigonometry	208	211	1	725	604	-17	725	656	-10	1,658	1,471	-11	
Pre-calculus	1,216	1,165	-4	2,140	1,775	-17	2,650	2,323	-12	6,006	5,263	-12	
Pre-calculus (2- course)	479	269	-44	947	725	-23	257	295	15	1,683	1,289	-23	
Trigonometry	1,848	1,675	-9	3,330	2,914	-12	2,538	2,260	-11	7,716	6,849	-11	
College algebra	4,226	3,314	-22	8,445	7,789	-8	1,902	1,610	-15	14,573	12,713	-13	
Statistics	13,393	11,869	-11	34,424	32,423	-6	5,495	4,949	-10	53,312	49,241	-8	
Liberal arts math	860	895	4	1,582	1,443	-9	4,177	4,324	4	6,619	6,662	1	
Number of students who successfully completed in one term													
Applied calculus	158	167	6	454	494	9	634	603	-5	1,246	1,264	1	
Finite math	78	81	4	342	303	-11	176	153	-13	596	537	-10	
Pre-calculus + trigonometry	87	105	21	306	377	23	391	390	0	784	872	11	
Pre-calculus	479	618	29	1,095	1,093	0	1,307	1,423	9	2,881	3,134	9	
Pre-calculus (2- course)	261	170	-35	613	517	-16	109	139	28	983	826	-16	
Trigonometry	722	881	22	1,570	1,635	4	1,037	1,150	11	3,329	3,666	10	
College algebra	1,549	1,581	2	3,553	4,107	16	693	778	12	5,795	6,466	12	
Statistics	6,484	6,117	-6	18,601	18,364	-1	2,811	2,900	3	27,896	27,381	-2	
Liberal arts math Success rate (%)	500	491	-2 change (pp)	871	890	2 change (pp)	2,357	2,544	8 change (pp)	3,728	3,925	5 change (pp)	
Applied calculus	41	49	8	54	65	11	62	68	7	55	64	8	
Finite math	33	33	0	57	63	6	49	52	2	50	53	2	
Pre-calculus + trigonometry	42	50	8	42	62	20	54	59	6	47	59	12	
Pre-calculus	39	53	14	51	62	10	49	61	12	48	60	12	
Pre-calculus (2- course)	54	63	9	65	71	7	42	47	5	58	64	6	
Trigonometry	39	53	14	47	56	9	41	51	10	43	54	10	
College algebra	37	48	11	42	53	11	36	48	12	40	51	11	
Statistics	48	52	3	54	57	3	51	59	7	52	56	3	
Liberal arts math	58	55	-3	55	62	7	56	59	2	56	59	3	

SOURCE: Authors' calculations using MIS data.

NOTES: First-time math students in each fall cohort.

FIGURE B7

Number of first-time math students successfully completing transfer math in one-term over time

NOTE: Fall of each year.

TABLE B5

Share of students who started in a transfer-level course and successfully complete it in their first attempt (%)

	2019	2020	PP change	% change in successful completions	% change in cohort size	PP change in TL access rate
SOUTHWEST L.A.	33	55	22	-13	-48	-5
BARSTOW	56	78	21	-6	-31	1
SAN MATEO	56	76	21	4	-24	1
PALO VERDE	38	57	19	109	41	1
L.A. PIERCE	48	66	17	19	-12	-2
COMPTON	40	56	16	-20	-43	12
EAST L.A.	41	56	15	-9	-33	-15
MODESTO	46	60	14	13	-14	-2
CRAFTON HILLS	50	64	14	10	-14	1
LANEY	53	67	14	19	-5	-9
SANTIAGO CANYON	40	54	14	14	-15	0
CHABOT	45	59	13	21	-7	5
IRVINE VALLEY	61	73	12	7	-11	3
SKYLINE	66	78	12	4	-12	10
WEST VALLEY	57	69	12	19	-1	2
SAN DIEGO CITY	46	58	12	1	-20	-12
L.A. VALLEY	44	55	11	6	-16	1
GOLDEN WEST	55	67	11	7	-11	-4
FOOTHILL	64	74	11	8	-7	0

	2019	2020	PP change	% change in successful completions	% change in cohort size	PP change in TL access rate
WEST L.A.	41	51	10	-1	-21	-12
EL CAMINO	41	51	10	10	-12	3
VICTOR VALLEY	41	51	10	-5	-24	11
L.A. CITY	32	42	10	36	3	-10
L.A. TRADE-TECH	38	48	10	-10	-29	-6
PASADENA CITY	47	57	10	4	-14	0
EVERGREEN VALLEY	56	65	10	50	27	37
MOORPARK	53	62	10	36	15	0
MT. SAN JACINTO	52	62	10	10	-7	-2
CANADA	60	70	9	-1	-14	9
GLENDALE	53	62	9	14	-3	5
IMPERIAL VALLEY	53	63	9	17	0	-18
RIVERSIDE	39	48	9	37	12	0
MARIN	50	59	9	-35	-45	5
ORANGE COAST	54	63	9	11	-5	-3
DE ANZA	68	77	9	21	7	1
CANYONS	61	69	8	19	5	-4
SANTA ANA	34	43	8	-8	-26	-2
SAN FRANCISCO CITY	60	68	8	9	-4	7
FEATHER RIVER	46	54	8	50	28	21
CHAFFEY	37	45	8	17	-3	17
SANTA MONICA	41	50	8	15	-3	3
SAN DIEGO MESA	60	68	8	-7	-18	-1
L.A. MISSION	35	43	8	-19	-34	-13
FULLERTON	46	53	7	14	-2	7
MT. SAN ANTONIO	43	51	7	20	2	3
SAN JOSE CITY	51	58	7	-10	-21	1
MORENO VALLEY	29	36	7	-40	-52	-8
BERKELEY CITY	60	67	7	-3	-13	-2
CABRILLO	44	50	7	16	0	17
CERRITOS	37	43	7	13	-4	-3
COASTLINE	58	65	7	-6	-15	3
GROSSMONT	52	58	6	-1	-12	-4
SANTA ROSA	52	58	6	11	-2	-3
SOUTHWESTERN	50	56	6	-5	-15	-5
DESERT	49	55	6	80	61	9
OHLONE	68	74	6	0	-7	3
CITRUS	57	63	6	-10	-18	-2
COLUMBIA	69	75	6	-8	-15	7
MERRITT	57	62	6	-16	-24	4
SAN JOAQUIN DELTA	62	67	5	9	0	-1
LONG BEACH CITY	38	43	5	27	12	8

	2019	2020	PP change	% change in successful completions	% change in cohort size	PP change in TL access rate
SAN DIEGO MIRAMAR	64	69	5	-9	-15	5
PALOMAR	48	53	5	9	-1	5
AMERICAN RIVER	60	64	4	9	2	1
LAS POSITAS	55	59	4	5	-2	8
COSUMNES RIVER	49	53	4	12	4	1
CYPRESS	48	52	4	4	-4	-1
FRESNO CITY	45	49	4	-32	-37	-10
SOLANO	51	55	4	37	27	3
MISSION	61	64	4	12	5	3
REEDLEY	51	55	4	-56	-59	3
NAPA VALLEY	49	53	3	-3	-9	-3
SACRAMENTO CITY	51	54	3	5	-1	5
BAKERSFIELD	47	49	3	25	18	-1
GAVILAN	50	53	2	17	11	18
SAN BERNARDINO	39	41	2	-17	-22	14
DIABLO VALLEY	65	67	2	0	-3	0
SADDLEBACK	54	57	2	28	23	4
OXNARD	62	64	2	-16	-19	N/A
MONTEREY	49	51	2	-5	-8	3
VENTURA	63	64	2	-5	-8	1
CONTRA COSTA	65	67	2	-24	-26	2
CUYAMACA	67	69	1	0	-2	7
ANTELOPE VALLEY	57	58	1	-1	-3	10
MIRA COSTA	64	65	1	15	13	4
ALAMEDA	64	65	1	-24	-25	12
ALLAN HANCOCK	57	58	1	-7	-8	9
REDWOODS	56	56	0	-29	-29	0
SEQUOIAS	51	51	0	10	10	3
MERCED	52	51	0	-5	-4	3
FOLSOM LAKE	61	60	0	1	1	0
CERRO COSO	54	53	-1	10	12	-1
SANTA BARBARA CITY	58	57	-1	0	1	-2
SISKIYOUS	72	71	-1	-43	-42	-7
RIO HONDO	43	42	-1	-19	-17	7
CLOVIS	62	61	-1	-33	-32	-5
YUBA	45	43	-1	-4	-1	4
LOS MEDANOS	64	62	-1	-20	-18	-5
BUTTE	55	53	-2	-7	-4	2
L.A. HARBOR	47	45	-2	-34	-31	5
NORCO	58	55	-3	-23	-18	-3
LAKE TAHOE	64	60	-4	-8	-1	16
SIERRA	60	56	-5	3	11	10

	2019	2020	PP change	% change in successful completions	% change in cohort size	PP change in TL access rate
PORTERVILLE	60	54	-6	-29	-21	0
HARTNELL	59	53	-6	-9	2	4
CUESTA	59	52	-7	-17	-7	2
LEMOORE	58	50	-8	-39	-30	-2
WOODLAND	57	49	-8	-14	1	0
COALINGA	64	54	-9	-53	-45	-9
MENDOCINO	70	59	-11	-37	-25	-4
SHASTA	58	46	-12	-7	17	6
TAFT	55	41	-13	-46	-29	-3
LASSEN	59	36	-24	-60	-32	-9
Total	51	57	6	3	-7	1

NOTES: Fall of each year. Restricted to students who started in a transfer-level course. This table is sorted in descending order of the 2019-2020 percentage point difference in one term throughput rate.

TABLE B6

First-time math students who successfully completed in one term by race/ethnicity

		2019			2020		Change 2019-20			
	Successful completions	First- time math takers	One-term throughput rate (%)	Successful completions	First- time math takers	One-term throughput rate (%)	Successful completions (%)	First-time math takers (%)	One-term throughput rate (pp)	
Asian	10,755	18,692	58	10,510	16,457	64	-2	-12	6	
Black	1,751	6,524	27	1,775	5,716	31	1	-12	4	
Latino	24,098	72,825	33	24,708	63,997	39	3	-12	6	
White	14,208	28,621	50	15,599	29,257	53	10	2	4	
Total	57,175	141,317	40	59,069	128,471	46	3	-9	6	

SOURCE: Authors' calculations using MIS data.

NOTES: Fall of each year.

TABLE B7

Share of first-time math students starting in a below transfer-level course (%)

		-					
	2015	2016	2017	2018	2019	2020	Category
COPPER MOUNTAIN	84	80	83	76	43	N/A	
L.A. TRADE-TECH	98	96	94	81	54	61	Low access into TL
EAST L.A.	86	88	90	73	43	58	Low access into TL
COMPTON	94	95	92	91	58	45	Low access into TL
SAN DIEGO CITY	79	79	81	75	33	44	Low access into TL
GLENDALE	72	69	64	51	47	43	Low access into TL
MERCED	80	77	77	67	43	40	Low access into TL
TAFT	80	80	78	57	35	38	Low access into TL
LAKE TAHOE	86	92	80	68	54	38	Low access into TL

	2015	2016	2017	2018	2019	2020	Category
IMPERIAL VALLEY	92	87	89	87	18	36	Low access into TL
MADERA	N/A	N/A	N/A	N/A	N/A	36	Low access into TL
LONG BEACH CITY	82	79	79	68	44	36	Low access into TL
COASTLINE	71	75	73	58	38	35	Low access into TL
OXNARD	80	78	71	61	N/A	35	Low access into TL
ALLAN HANCOCK	82	78	72	65	44	35	Low access into TL
LANEY	71	70	64	62	25	34	Low access into TL
AMERICAN RIVER	84	82	90	68	35	34	Low access into TL
CONTRA COSTA	66	67	56	55	35	34	Low access into TL
L.A. MISSION	88	86	67	64	20	34	Low access into TL
WEST L.A.	85	85	86	85	21	33	Low access into TL
COSUMNES RIVER	78	80	86	72	34	33	Low access into TL
YUBA	95	94	93	77	37	33	Low access into TL
SHASTA	68	67	56	59	39	33	Low access into TL
MENDOCINO	82	82	86	82	29	33	Low access into TL
PALOMAR	79	79	59	53	36	32	Medium access into TL
SOUTHWESTERN	91	87	82	64	25	30	Medium access into TL
SAN JOAQUIN DELTA	86	87	77	78	29	30	Medium access into TL
CERRITOS	86	84	82	69	27	30	Medium access into TL
SACRAMENTO CITY	91	91	92	68	34	29	Medium access into TL
ANTELOPE VALLEY	87	85	85	83	39	29	Medium access into TL
LASSEN	94	85	77	79	20	29	Medium access into TL
SAN BERNARDINO	93	94	92	94	42	28	Medium access into TL
SOUTHWEST L.A.	92	93	89	93	21	25	Medium access into TL
WOODLAND	88	93	87	75	26	25	Medium access into TL
SANTA ROSA	69	71	68	70	22	25	Medium access into TL
SANTA MONICA	67	61	67	69	28	25	Medium access into TL
LEMOORE	79	86	82	67	23	25	Medium access into TL
MORENO VALLEY	95	91	60	54	17	25	Medium access into TL
SAN DIEGO MIRAMAR	58	53	49	45	30	24	Medium access into TL
SAN FRANCISCO CITY	68	66	64	59	31	24	Medium access into TL
NAPA VALLEY	73	68	68	60	21	24	Medium access into TL
L.A. VALLEY	91	79	72	72	25	24	Medium access into TL
MOORPARK	61	60	61	52	23	24	Medium access into TL
MT. SAN ANTONIO	74	72	75	54	27	24	Medium access into TL
SAN DIEGO MESA	56	55	53	40	22	23	Medium access into TL
FRESNO CITY	75	71	64	63	12	23	Medium access into TL
COALINGA	86	80	76	67	13	22	Medium access into TL
HARTNELL	89	85	85	58	26	22	Medium access into TL
BAKERSFIELD	83	81	75	61	21	22	Medium access into TL
LOS MEDANOS	66	45	37	29	17	21	Medium access into TL
L.A. CITY	89	89	89	83	11	21	Medium access into TL
L.A. PIERCE	78	79	63	64	19	21	Medium access into TL
CYPRESS	74	71	69	66	19	20	Medium access into TL

	2015	2016	2017	2018	2019	2020	Category
FEATHER RIVER	68	68	71	58	41	20	Medium access into TL
GAVILAN	86	80	79	64	38	20	Medium access into TL
DESERT	80	81	81	65	29	20	Medium access into TL
GROSSMONT	74	68	66	50	16	20	Medium access into TL
SAN JOSE CITY	80	79	71	70	19	19	Medium access into TL
MODESTO	93	91	90	70	17	19	Medium access into TL
NORCO	91	88	60	47	15	18	Medium access into TL
CLOVIS	57	55	54	48	13	18	Medium access into TL
SISKIYOUS	86	35	34	20	11	18	Medium access into TL
SOLANO	65	62	63	51	21	18	Medium access into TL
MONTEREY	83	84	81	70	20	17	Medium access into TL
MISSION	72	71	56	72	20	17	Medium access into TL
RIO HONDO	93	83	76	72	24	17	Medium access into TL
CUESTA	70	71	66	43	19	17	Medium access into TL
CANADA	63	60	55	55	26	17	Medium access into TL
CERRO COSO	87	78	81	82	16	16	Medium access into TL
SKYLINE	79	65	49	42	27	16	Medium access into TL
L.A. HARBOR	84	86	80	70	21	16	Medium access into TL
COLUMBIA	81	81	79	48	23	16	Medium access into TL
CRAFTON HILLS	81	74	59	38	17	16	Medium access into TL
FOLSOM LAKE	75	77	77	56	16	15	Medium access into TL
FULLERTON	60	58	58	54	21	15	Medium access into TL
BUTTE	76	78	68	57	16	14	Medium access into TL
OHLONE	84	81	76	64	16	14	Medium access into TL
WEST VALLEY	79	78	73	73	15	13	Medium access into TL
CANYONS	82	63	59	55	9	13	Medium access into TL
MT. SAN JACINTO	85	82	82	56	10	12	Medium access into TL
FOOTHILL	41	46	45	14	12	12	Medium access into TL
SANTIAGO CANYON	63	62	56	44	11	12	Medium access into TL
SANTA ANA	69	63	61	57	9	11	Medium access into TL
SADDLEBACK	68	75	73	58	15	11	Medium access into TL
SAN MATEO	64	55	52	47	12	11	Medium access into TL
EL CAMINO	85	85	81	73	14	11	Medium access into TL
DE ANZA	69	70	66	26	11	10	Medium access into TL
GOLDEN WEST	63	64	55	53	6	10	Medium access into TL
BARSTOW	85	88	85	72	11	10	Medium access into TL
ORANGE COAST	60	63	62	54	7	10	Medium access into TL
EVERGREEN VALLEY	81	80	71	60	46	9	High access into TL
CUYAMACA	75	44	37	23	16	9	High access into TL
CHABOT	72	74	69	61	15	9	High access into TL
BERKELEY CITY	63	58	58	52	7	9	High access into TL
CITRUS	82	82	78	44	7	9	High access into TL
MARIN	79	79	79	78	14	9	High access into TL
MIRA COSTA	60	57	48	37	13	9	High access into TL

	2015	2016	2017	2018	2019	2020	Category
LAS POSITAS	70	68	64	48	17	9	High access into TL
VENTURA	67	64	60	52	9	8	High access into TL
RIVERSIDE	91	90	59	49	8	8	High access into TL
MERRITT	83	81	82	76	12	8	High access into TL
CHAFFEY	85	87	87	86	25	7	High access into TL
SIERRA	64	53	46	39	17	7	High access into TL
PALO VERDE	95	93	92	83	8	7	High access into TL
SANTA BARBARA CITY	59	47	46	49	5	7	High access into TL
CABRILLO	77	80	78	56	24	6	High access into TL
DIABLO VALLEY	46	44	41	38	5	5	High access into TL
IRVINE VALLEY	54	55	44	42	8	5	High access into TL
REDWOODS	70	71	73	44	5	5	High access into TL
ALAMEDA	73	66	69	44	14	3	High access into TL
PASADENA CITY	79	77	64	41	0	0	High access into TL
PORTERVILLE	78	71	67	61	0	0	High access into TL
REEDLEY	82	83	70	64	3	0	High access into TL
SEQUOIAS	85	85	84	81	3	0	High access into TL
VICTOR VALLEY	95	94	90	79	11	0	High access into TL
Total	76	74	70	60	21	20	

NOTES: Fall of each year. BTL is below transfer-level. "Higher access" are colleges where the share of first-time math students starting directly in a transfer-level course is one standard deviation above the system-wide share (i.e., 91% or higher) while "lower access" are colleges where the share of first-time math students starting directly in a transfer-level course is one standard deviation below (i.e., 68% or lower). "Medium access" are colleges where the share of first-time math students starting directly in a transfer-level course is one standard deviation below (i.e., 68% or lower). "Medium access" are colleges where the share of first-time math students starting directly in a transfer-level course is between 68% and 91%. Fall 2020 data for Copper Mountain was not available in the MIS. This table is sorted in descending order of the share of first-time math students starting in a BTL course. N/A is not applicable or not available.

FIGURE B8

Share of first-time math students successfully completing a TL course as of next fall by race/ethnicity, students who started in a below transfer-level course versus students who started in a corequisite model

SOURCE: Authors' calculations using MIS data.

NOTE: Fall 2019 cohort. Restricted to students with a transfer goal. For reference, there were 16,700 corequisite students and 18,700 students who started in a below transfer-level course.

FIGURE B9

Outcomes of students who started in TL course and did not complete it on their first attempt as of the following fall

SOURCE: Authors' calculations using MIS data.

NOTE: Fall of each year. Restricted to students with a transfer goal. For reference, there were 19,800 students in the 2018 cohort who started in a transfer-level course and did not complete it and 39,700 students in the 2019 cohort.

FIGURE B10

Fall-to-fall throughput rates by race/ethnicity, BTL versus students who started in transfer-level course and did not successfully complete it on their first attempt (no controls)

- BTL students 1st term unsuccessful corequisite students
- 1st term unsuccessful standalone students 1st term unsuccessful all students

SOURCE: Authors' calculations using MIS data.

NOTE: Fall 2019 cohort. Restricted to students with a transfer goal. For reference, of all 1st term unsuccessful students, 8,900 took their transfer-level course with corequisite support the first time around and 30,700 without it.

TABLE B8

Students' characteristics and outcomes: One-term completers, students who started in a TL course but did not successfully complete in their first attempt, and BTL students

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
		One-term comp	Studer but did	nts who started I not successfu their first att	in a TL course lly complete in empt					
	All	Standalone	Corequisite	All	Standalone	Corequisite	BTL students	Total transfer- intending cohort	(7)-(4)	(7)-(6)
Number of transfer- intending students - - Fall 2019	43,220	35,465	7,755	39,669	30,748	8,921	18,751	101,640		
One-year throughput rate	100	100	100	18	20	13	15	52	-3	2
Fall-to-fall throughput rate	100	100	100	26	28	19	20	56	-6	1
Latino	42	41	49	59	57	64	59	54	0	-5
White	25	26	21	17	17	14	17	19	1	4
Asian	20	20	17	10	11	8	9	13	-1	2

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
		One-term comp	leters	Studer but did	ts who started not successful their first atte	in a TL course lly complete in empt			No regres adju differo	on ssion- sted ences
	All	Standalone	Corequisite	All	Standalone	Corequisite	BTL students	Total transfer- intending cohort	(7)-(4)	(7)-(6)
Black	3	3	4	5	5	7	6	5	1	0
Other	11	11	10	9	10	9	9	10	-1	0
Native American	0	0	5	0	0	4	0	1	0	-3
Islander	0	0	5	1	1	4	0	1	0	-3
Two or more races	5	5	1	4	4	1	4	4	-1	3
Unknown	5	5	0	4	4	0	4	4	0	4
Female	53	53	54	49	49	50	51	51	2	1
Male	45	46	45	49	49	49	47	47	-2	-1
Unknown gender	1	1	1	1	1	1	1	1	0	0
U.S. citizen	87	86	88	91	91	91	88	88	-3	-3
Non traditional student	7	7	8	5	5	4	15	7	10	11
DSPS students	3	3	5	4	4	6	7	4	3	1
EOP&S students	8	8	10	9	8	11	10	9	1	-2
LEP students	2	2	2	1	1	1	4	2	3	3
Special program participatio n	2	2	3	2	2	2	1	2	0	-1
Prior dual	15	15	12	12	12	10	8	12	-3	-2
First generation students	34	33	37	41	41	41	44	38	2	3
First generation missing	27	26	30	31	29	37	34	30	4	-2
Edu: Not a HS graduate	1	1	1	1	1	1	1	1	1	1
Edu: Adult education student	0	0	0	0	0	0	0	0	0	0
Edu: HS diploma	88	88	89	93	93	94	86	90	-7	-7
Edu: GED	2	2	2	1	1	1	3	2	2	2
Edu: California High School Proficienc y Cert	1	1	1	1	1	1	1	1	0	0
Edu: Foreign HS degree	4	4	3	1	1	1	4	3	3	3

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
		One-term comp	leters	Studer but did	ts who started not successfu their first att	in a TL course Ily complete in empt			No regres adju differo	on ssion- sted ences
	All	Standalone	Corequisite	All	Standalone	Corequisite	BTL students	Total transfer- intending cohort	(7)-(4)	(7)-(6)
Edu: AA	1	1	1	0	0	0	1	1	0	0
Edu: BA	1	1	1	0	0	0	0	0	0	0
Edu: Unknown Eirst-time	3	3	3	3	3	3	3	3	0	0
credit students	63	63	65	68	67	71	58	64	-10	-13
BSTEM Major	39	40	35	36	37	34	32	37	-4	-2
Full time	85	85	86	78	77	81	68	79	-10	-14
GPA>3.0 no math	76	77	70	35	36	31	40	53	5	10
GPA>3.0 no math missing	0	0	0	5	4	6	4	3	0	-1
Persisted into spring	94	94	94	79	79	77	79	85	0	2
Persisted into fall	79	78	80	61	62	57	60	68	-1	3
GPA_3_S pring	72	73	66	35	36	30	37	51	2	7
GPA_3_S pring_miss ing	6	6	6	22	21	24	22	15	0	-2
GPA_3_F all	57	57	52	27	29	22	29	40	2	7
GPA_3_F all_missin q	21	22	20	39	38	43	40	32	1	-3
Units earned as a share of units attempted during first term (excludin g math courses)									0	0
25% or less	2	2	3	23	22	28	21	14	-2	-7
25-50%	4	3	6	13	13	15	10	9	-3	-5
50-75%	8	8	8	14	14	12	9	10	-5	-3
More than 75%	84	85	81	47	48	42	52	64	5	10
missing	2	2	3	3	3	3	8	4	5	5
Units earned as a share of units attempted during following Spring 25% ar									0	0
25% or less	7	7	10	23	22	26	21	16	-2	-4

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
		One-term completers		Studer but did	nts who started I not successfu their first att	in a TL course Ily complete in empt			No regres adju differo	on ssion- sted ences
	All	Standalone	Corequisite	All	Standalone	Corequisite	BTL students	Total transfer- intending cohort	(7)-(4)	(7)-(6)
25-50%	5	5	7	10	10	11	10	8	-1	-1
50-75%	12	11	14	12	12	12	10	12	-2	-2
More than 75%	70	71	64	33	34	28	35	49	3	8
missing	6	6	6	22	21	24	23	15	2	0
Units earned as a share of units attempted during following Fall									0	0
25% or less	7	7	9	16	16	17	14	12	-2	-3
25-50%	4	4	6	7	7	7	6	6	-1	-1
50-75%	9	8	11	8	9	8	7	8	-1	-1
More than 75%	58	59	53	29	31	24	31	42	2	7
missing	22	22	21	39	38	44	42	32	2	-2

NOTES: Fall of 2019 cohort.

TABLE B9

Difference in the likelihood of successful completion relative to students who started in a BTL course (**Underlying results** Figure 10)

	Students v in a TL cou not succ complete first a	vho started irse and did cessfully it in their ttempt	Students v in a TL cou not succ complete first at Corequisit	vho started rse and did cessfully it in their tempt - e students	Students v in a TL cou not succ complete first att Standalon	who started rse and did cessfully it in their cempt e students	All core stud	equisite lents
	one-year throughput	fall-to-fall throughput	one-year throughput	fall-to-fall throughput	one-year throughput	fall-to-fall throughput	one-year throughput	fall-to-fall throughput
Coeficient of interest	0.043	0.069	0.003	0.026	0.055	0.082	0.335	0.313
	(0.006)***	(0.006)***	(0.007)	(0.009)***	(0.006)***	(0.006)***	(0.012)***	(0.011)***
Asian	0.059	0.077	0.035	0.05	0.061	0.079	0.054	0.062
	(0.011)***	(0.013)***	(0.012)***	(0.014)***	(0.012)***	(0.014)***	(0.011)***	(0.013)***
Black	-0.055	-0.08	-0.057	-0.077	-0.053	-0.079	-0.099	-0.11
	(0.008)***	(0.009)***	(0.008)***	(0.009)***	(0.009)***	(0.010)***	(0.010)***	(0.010)***
Latino	-0.042	-0.061	-0.038	-0.06	-0.041	-0.058	-0.059	-0.072
	(0.006)***	(0.008)***	(0.007)***	(0.010)***	(0.007)***	(0.009)***	(0.008)***	(0.009)***
Native American	-0.045	-0.074	-0.008	-0.045	-0.041	-0.065	-0.048	-0.078

	Students w in a TL cou not succ complete first at	vho started rse and did cessfully it in their ttempt	Students w in a TL cou not succ complete first at Corequisit	vho started rse and did cessfully it in their tempt - e students	Students w in a TL cou not succ complete first att Standalon	vho started rse and did cessfully it in their empt e students	All core stud	equisite ents
	(0.020)**	(0.023)***	(0.025)	(0.029)	(0.024)*	(0.026)**	(0.033)	(0.034)**
Pacific Islander	-0.045	-0.052	-0.047	-0.049	-0.042	-0.051	-0.043	-0.046
	(0.018)**	(0.021)**	(0.022)**	(0.026)*	(0.020)**	(0.023)**	(0.027)	(0.030)
Two or more races	-0.025	-0.044	-0.022	-0.04	-0.023	-0.041	-0.025	-0.039
	(0.009)***	(0.009)***	(0.011)*	(0.014)***	(0.009)**	(0.010)***	(0.011)**	(0.012)***
Unknown race	-0.01	-0.022	-0.008	-0.021	-0.01	-0.019	-0.008	-0.017
	(0.007)	(0.008)***	(0.010)	(0.013)*	(0.007)	(0.009)**	(0.011)	(0.012)
Female	0.01	0.024	0.009	0.022	0.011	0.025	0.013	0.022
	(0.003)***	(0.003)***	(0.004)**	(0.005)***	(0.004)***	(0.004)***	(0.004)***	(0.004)***
Unknown gender	0.024	0.01	0.029	0.033	0.029	0.008	0.042	0.044
	(0.015)	(0.016)	(0.019)	(0.022)	(0.017)*	(0.019)	(0.018)**	(0.018)**
Non Traditional Age	0.013	0.013	0.013	0.019	0.012	0.014	0.033	0.035
	(0.007)*	(0.008)	(0.008)	(0.009)**	(0.007)	(0.009)	(0.009)***	(0.009)***
CPG or PELL recipient	-0.014	-0.018	-0.01	-0.013	-0.011	-0.018	-0.021	-0.022
	(0.004)***	(0.005)***	(0.005)*	(0.006)**	(0.005)**	(0.006)***	(0.007)***	(0.007)***
EOP&S students	-0.004	-0.001	-0.004	-0.002	-0.003	0.003	-0.008	-0.005
	(0.006)	(0.007)	(0.007)	(0.008)	(0.006)	(0.007)	(0.008)	(0.008)
DSPS students	-0.01	-0.005	-0.015	-0.011	-0.004	-0.001	-0.035	-0.028
	(0.007)	(0.008)	(0.008)*	(0.009)	(0.008)	(0.009)	(0.010)***	(0.010)***
U.S. Citizen	-0.042	-0.039	-0.04	-0.045	-0.045	-0.041	-0.037	-0.04
	(0.006)***	(0.006)***	(0.007)***	(0.008)***	(0.006)***	(0.007)***	(0.007)***	(0.008)***
LEP students	-0.03	-0.031	-0.036	-0.045	-0.032	-0.034	-0.041	-0.047
	(0.012)**	(0.014)**	(0.014)***	(0.015)***	(0.013)**	(0.014)**	(0.017)**	(0.017)***
Foster	-0.052	-0.066	-0.048	-0.061	-0.05	-0.063	-0.073	-0.08
	(0.012)***	(0.012)***	(0.016)***	(0.015)***	(0.014)***	(0.014)***	(0.020)***	(0.019)***
First time student in the CCC	-0.034	-0.039	-0.016	-0.022	-0.033	-0.035	-0.02	-0.024
	(0.005)***	(0.005)***	(0.005)***	(0.006)***	(0.005)***	(0.006)***	(0.006)***	(0.006)***
Full time student in their first term	0.075	0.09	0.065	0.079	0.078	0.094	0.073	0.081
	(0.005)***	(0.006)***	(0.006)***	(0.007)***	(0.006)***	(0.007)***	(0.007)***	(0.007)***
GPA (no math) >3.0 in their first term	0.091	0.112	0.091	0.111	0.095	0.117	0.158	0.164
	(0.004)***	(0.005)***	(0.005)***	(0.006)***	(0.005)***	(0.006)***	(0.006)***	(0.006)***
GPA (no math) >3.0 in their first term missing	-0.125	-0.169	-0.113	-0.142	-0.132	-0.175	-0.185	-0.202
	(0.009)***	(0.011)***	(0.010)***	(0.014)***	(0.010)***	(0.012)***	(0.017)***	(0.018)***
ShareUnitsEarned_25- 50%	0.06	0.063	0.06	0.051	0.058	0.064	0.083	0.074

	Students w in a TL cou not succ complete first at	vho started rse and did cessfully it in their ttempt	Students w in a TL cou not succ complete first at Corequisit	vho started rse and did cessfully it in their tempt - e students	Students w in a TL cou not succ complete first att Standalon	vho started rse and did cessfully it in their empt e students	All core stud	equisite ents
	(0.008)***	(0.009)***	(0.014)***	(0.013)***	(0.009)***	(0.010)***	(0.012)***	(0.011)***
ShareUnitsEarned_50- 75%	0.129	0.14	0.126	0.131	0.12	0.136	0.165	0.162
	(0.009)***	(0.009)***	(0.014)***	(0.015)***	(0.010)***	(0.010)***	(0.011)***	(0.011)***
ShareUnitsEarned_more than 75%	0.204	0.259	0.176	0.223	0.208	0.264	0.297	0.321
	(0.007)***	(0.008)***	(0.009)***	(0.010)***	(0.008)***	(0.008)***	(0.014)***	(0.013)***
ShareUnitsEarned_missi ng	0.218	0.224	0.216	0.217	0.221	0.236	0.282	0.268
	(0.015)***	(0.014)***	(0.018)***	(0.017)***	(0.017)***	(0.015)***	(0.012)***	(0.012)***
Special program participation	0.048	0.049	0.062	0.051	0.049	0.054	0.044	0.038
	(0.015)***	(0.016)***	(0.019)***	(0.023)**	(0.016)***	(0.018)***	(0.022)**	(0.023)
Attending multiple colleges	0.06	0.071	0.055	0.065	0.061	0.07	0.057	0.063
	(0.006)***	(0.008)***	(0.010)***	(0.011)***	(0.006)***	(0.008)***	(0.009)***	(0.009)***
Prior dual enrollment	0.025	0.032	0.015	0.021	0.027	0.033	0.029	0.031
	(0.007)***	(0.009)***	(0.008)*	(0.010)**	(0.008)***	(0.010)***	(0.010)***	(0.011)***
Observations	58,420	58,420	27,672	27,672	49,499	49,499	35,427	35,427

NOTES: Fall 2019 cohort. Only transfer-intending students included. Each column is a regression. Column headers are the dependent variable. "Coefficient of interest" is the estimate of the difference in the likelihood of successful completion between the group in the column header and BTL students. Average marginal effects from probit regressions. By multiplying coefficients by 100 you get percentage points increases/decreases in the probability. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Special program participation includes Mesa, Puente and Umoja. Share units earned is units earned as a share of units attempted (25% or less is the reference group). White students are the reference group for race/ethnicity in the regressions.

TABLE B10

One-year and fall-to-fall TL successful completions among students who started in a transfer-level course and did not complete in their first attempt and BTL students (sorted by number of students starting in a BTL course)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	TL Access rate 2019	Students who started in a TL course and did not successfully complete it in their first attempt	BTL students	Students who started in a TL course and did not successfully complete it in their first attempt completion rate within a year (%)	BTL students completion rate within a year (%)	Diff (4)-(5)	Students who started in a TL course and did not successfully complete it in their first attempt completion rate as of next fall (%)	BTL students completion rate as of next fall (%)	Diff (7)-(8)
LONG BEACH CITY	56	882	1,072	13	11	2	19	15	4
EAST L.A.	57	715	881	16	9	8	22	13	10
SANTA MONICA	72	1,253	800	18	12	7	26	16	11
SAN BERNARDINO	58	583	628	11	9	2	18	12	6
PALOMAR	64	611	561	15	15	1	24	19	5
MT. SAN ANTONIO	73	1,050	552	18	7	10	24	11	13

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	TL Access rate 2019	Students who started in a TL course and did not successfully complete it in their first attempt	BTL students	Students who started in a TL course and did not successfully complete it in their first attempt completion rate within a year (%)	BTL students completion rate within a year (%)	Diff (4)-(5)	Students who started in a TL course and did not successfully complete it in their first attempt completion rate as of next fall (%)	BTL students completion rate as of next fall (%)	Diff (7)-(8)
CERRITOS	73	1,095	497	21	8	13	26	14	12
AMERICAN RIVER	65	408	468	16	13	2	21	19	2
GLENDALE	53	261	435	37	18	19	47	24	23
EVERGREEN	E A	254	400	20	14	c	20	22	F
	54	254	420	20	14	10	20	23	12
SACRAMENTO	00	444	401	23	13	10	33	20	13
CITY	66	442	395	14	18	-4	24	22	1
FULLERTON	79	840	382	19	15	4	31	21	10
L.A. PIERCE	81	844	355	20	25	-5	30	32	-3
CITY	69	346	344	21	21	-1	32	27	5
MERCED	57	300	342	16	12	4	20	16	4
SAN JOAQUIN	71	370	338	14	15	1	24	21	3
SOUTHWESTERN	75	631	331	14	11	-1	24	18	7
	75	798	329	16	15	1	20	19	1
MOORPARK	77	523	272	27	22	5	40	32	7
	75	458	266	20	24	-4	25	30	-5
ANTELOPE VALLEY	61	234	244	21	21	0	27	28	-1
SIERRA	83	584	239	18	16	2	26	22	4
BAKERSFIELD	79	535	236	14	7	7	24	10	13
GROSSMONT	84	635	225	15	11	4	22	16	5
RIO HONDO	76	504	220	13	10	3	19	18	1
ALLAN HANCOCK	56	154	216	25	7	17	32	12	20
L.A. HARBOR	79	368	201	13	16	-4	19	20	-1
L.A. TRADE-TECH	46	134	196	16	11	5	22	13	10
SAN DIEGO	70	047	405	04	04	4	0.4	00	0
	70	217	195	24	21	4	34	26	8
	09	202	193	35	30	0	42	39	3
	25	554	191	10	20	-5	23	24	-1
CYPRESS	81	504	180	14	12	2	24	18	5
SAN DIEGO MESA	78	299	178	24	27	-3	30	32	-2
CONTRA COSTA	65	114	174	15	15	0	18	19	-1
DESERT	71	263	167	19	10	8	32	17	15
CABRILLO	76	363	157	20	11	9	28	13	15
TAFT	65	140	151	9	9	1	14	15	-1
MT. SAN JACINTO	90	858	150	18	22	-4	25	32	-7
EL CAMINO	86	443	149	16	15	1	21	21	0
YUBA	63	148	149	13	11	1	21	15	6
SKYLINE	73	148	144	21	17	4	33	20	13
GAVILAN	62	137	143	22	12	10	29	16	13
OHLONE	84	231	132	29	31	-2	40	38	2
CUESTA	81	322	127	13	12	1	19	18	1
MODESTO	83	463	124	16	13	3	26	19	7

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	TL Access rate 2019	Students who started in a TL course and did not successfully complete it in their first attempt	BTL students	Students who started in a TL course and did not successfully complete it in their first attempt completion rate within a year (%)	BTL students completion rate within a year (%)	Diff (4)-(5)	Students who started in a TL course and did not successfully complete it in their first attempt completion rate as of next fall (%)	BTL students completion rate as of next fall (%)	Diff (7)-(8)
SANTA ROSA	78	298	122	25	16	9	39	27	12
FOLSOM LAKE	84	289	119	18	13	6	27	24	3
FRESNO CITY	88	684	119	9	16	-7	14	18	-4
NORCO	85	311	119	20	17	3	28	22	6
CLOVIS	87	329	114	14	16	-2	21	23	-2
L.A. MISSION	80	320	112	9	16	-7	13	21	-8
RIVERSIDE	92	802	110	17	18	-1	24	21	3
LOS MEDANOS	83	333	106	17	16	1	25	22	3
SOLANO	79	267	106	15	9	5	23	12	11
BUTTE	84	266	104	9	16	-7	17	20	-3
SAN DIEGO CITY	67	198	103	14	16	-2	22	23	-2
SHASTA	61	96	101	11	12	0	18	17	1
MIRA COSTA	87	254	98	25	18	6	35	24	11
MONTEREY	80	219	95	15	11	4	21	19	3
MORENO VALLEY	83	422	95	13	17	-4	18	21	-3
CRAFTON HILLS	83	278	94	14	23	-9	21	28	-7
IRVINE VALLEY	92	539	92	30	26	4	40	37	3
CHABOT	85	421	90	17	16	1	27	26	2
L.A. CITY	89	597	89	15	30	-16	19	38	-19
NAPA VALLEY	79	201	89	15	21	-6	24	30	-6
SOUTHWEST L.A.	79	251	87	13	10	2	18	15	3
WEST VALLEY	85	213	87	23	29	-5	32	36	-4
LAS POSITAS	83	272	86	25	16	9	29	23	6
CANADA	74	141	81	13	22	-9	18	26	-7
LEMOORE	77	111	77	14	17	-2	25	21	4
WEST L.A.	79	219	75	15	16	-1	21	23	-2
ORANGE COAST	93	574	72	22	13	9	30	22	8
VENTURA	91	349	70	20	13	7	27	20	7
CANYONS	91	362	69	27	19	8	32	29	3
SAN MATEO	88	303	69	24	14	10	35	20	14
VICTOR VALLEY	89	453	69	12	16	-4	18	19	-1
SAN JOSE CITY	81	170	67	15	16	-1	22	24	-2
DIABLO VALLEY	95	577	65	23	34	-10	32	37	-5
FOOTHILL SANTA BARBARA CITY	88 95	653	64	29	47 20	-18	33	28	-14
CITRUS	93	380	61	13	20	-6	22	26	-4
CUYAMACA	84	155	61	15	25	-10	22	36	-14
SANTIAGO CANYON	89	378	61	24	25	-1	36	33	3
MENDOCINO	71	40	50	5	16	-11	10	16	-6
WOODLAND	74	83	50	18	14	4	27	18	9
MISSION	80	96	42	16	24	-8	26	31	-5
LANEY	75	100	41	24	12	12	31	22	9
MARIN	86	143	41	13	10	4	23	10	13

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	TL Access rate 2019	Students who started in a TL course and did not successfully complete it in their first attempt	BTL students	Students who started in a TL course and did not successfully complete it in their first attempt completion rate within a year (%)	BTL students completion rate within a year (%)	Diff (4)-(5)	Students who started in a TL course and did not successfully complete it in their first attempt completion rate as of next fall (%)	BTL students completion rate as of next fall (%)	Diff (7)-(8)
LAKE TAHOE	46	20	38	25	32	-7	35	32	3
COPPER MOUNTAIN	57	29	37	0	11	-11	0	11	-11
FEATHER RIVER	59	32	37	28	30	-2	34	32	2
SANTA ANA	91	447	33	18	21	-3	23	27	-4
GOLDEN WEST	94	337	32	17	16	1	26	22	4
COLUMBIA	77	45	30	2	10	-8	9	10	-1
CERRO COSO	84	86	27	16	15	1	20	15	5
BERKELEY CITY	93	135	23	27	43	-16	38	48	-10
COASTLINE	62	45	23	13	39	-26	16	43	-28
ALAMEDA	86	56	20	13	20	-8	14	20	-6
COMPTON	42	6	20	0	25	-25	0	25	-25
BARSTOW	89	76	18	13	22	-9	20	33	-14
IMPERIAL VALLEY	82	65	17	25	18	7	32	18	15
COALINGA	87	56	16	14	6	8	23	6	17
MERRITT	88	50	15	14	27	-13	20	33	-13
REEDLEY	97	393	14	10	7	3	14	7	7
REDWOODS	95	154	12	10	17	-7	18	25	-7
SISKIYOUS	89	31	9	23	11	11	26	33	-8
PALO VERDE	92	41	7	0	0	0	2	0	2
LASSEN	80	30	3	27	33	-7	37	33	3
PASADENA CITY	100	1,532	N/A	26	N/A	N/A	33	N/A	N/A
PORTERVILLE	100	131	N/A	8	N/A	N/A	11	N/A	N/A
SEQUOIAS	97	7	N/A	0	N/A	N/A	0	N/A	N/A
OXNARD	100	162	N/A	12	N/A	N/A	19	N/A	N/A
Total	79	39,669	18,751	18	15	3	26	20	6

NOTES: Fall of each year. N/A is not applicable or not available.

TABLE B11

Probability of starting in a BTL course by access tier -- average marginal effects (Underlying results Figure 14)

	Lower access TL	Medium access TL	Higher access TL		Lower access TL	Medium access TL	Higher access TL
Asian	-0.045	-0.036	-0.020	LEP student	0.268	0.198	0.106
	(0.014)***	(0.009)***	(0.006)***		(0.030)***	(0.028)***	(0.019)***
Black	0.066	0.024	-0.004	Foster student	0.039	0.043	0.019
	(0.024)***	(0.014)*	(0.011)		(0.023)*	(0.016)***	(0.025)
Latino	0.072	0.032	-0.007	First time student in the CCC	-0.027	-0.031	-0.016
	(0.015)***	(0.007)***	(0.005)		(0.011)**	(0.009)***	(0.006)***
Native American	0.132	0.063	0.003	Full time student in their first term	-0.062	-0.061	-0.034

	Lower access TL	Medium access TL	Higher access TL		Lower access TL	Medium access TL	Higher access TL
	(0.059)**	(0.030)**	(0.022)		(0.019)***	(0.008)***	(0.009)***
Pacific Islander	0.001	-0.015	-0.023	GPA (no math) >3.0 in their first term	-0.077	-0.046	-0.013
	(0.053)	(0.016)	(0.014)		(0.007)***	(0.005)***	(0.003)***
Two or more races	-0.013	-0.004	-0.012	GPA (no math) >3.0 in their first term missing	-0.010	0.009	-0.003
	(0.017)	(0.008)	(0.005)**		(0.021)	(0.010)	(0.007)
Unknown race	0.040	-0.027	-0.006	ShareUnitsEarned_25-50%	-0.032	-0.004	-0.006
	(0.019)**	(0.027)	(0.004)		(0.018)*	(0.006)	(0.003)**
Female	-0.015	-0.001	-0.009	ShareUnitsEarned_50-75%	-0.106	-0.043	-0.014
	(0.008)*	(0.004)	(0.004)**		(0.014)***	(0.007)***	(0.004)***
Unknown gender	0.009	-0.008	-0.006	ShareUnitsEarned_more than 75%	-0.115	-0.053	-0.023
	(0.026)	(0.012)	(0.008)		(0.014)***	(0.007)***	(0.006)***
Non traditional age	0.144	0.125	0.045	ShareUnitsEarned_missing	-0.007	-0.003	-0.011
	(0.015)***	(0.010)***	(0.015)***		(0.027)	(0.014)	(0.006)*
CPG or PELL recipient	0.059	0.028	0.013	Special program participation	-0.104	-0.062	-0.029
	(0.008)***	(0.007)***	(0.005)***		(0.043)**	(0.017)***	(0.012)**
EOP&S students	0.040	0.000	-0.009	Attending multiple colleges	-0.093	-0.050	-0.002
	(0.015)***	(0.011)	(0.007)		(0.011)***	(0.009)***	(0.008)
DSPS student	0.181	0.141	0.043	Prior dual enrollment	-0.080	-0.051	-0.009
	(0.025)***	(0.016)***	(0.009)***		(0.025)***	(0.009)***	(0.008)
U.S. Citizen	-0.018	-0.020	-0.003	Transfer Goal	-0.087	-0.076	-0.015
	(0.013)	(0.009)**	(0.005)		(0.012)***	(0.011)***	(0.007)**

NOTES: Fall 2019 cohort. Average marginal effects from probit regressions. Number of observations: Lower access (27,493), medium access (84,669) and higher access (24,102). By multiplying the coefficients by 100 you get percentage points increases/decreases in the probability. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Special program participation includes Mesa, Puente and Umoja. Share units earned is units earned as a share of units attempted (25% or less is the reference group). White students are the reference group for race/ethnicity in the regressions.

TABLE B12

Probability of successfully completing a transfer-level course in one term among students who started in a transfer-level course

	Average marginal effects		Average marginal effects
Asian	0.048	LEP student	0.04
	(0.009)***		(0.013)***
Black	-0.126	Foster student	-0.067
	(0.010)***		(0.015)***
Latino	-0.086	First time student in the CCC	-0.019
	(0.008)***		(0.006)***
Native American	-0.076	Full time student in their first term	0.03
	(0.027)***		(0.005)***
Pacific Islander	-0.082	GPA (no math) >3.0 in their first term	0.249

	Average marginal effects		Average marginal effects
	(0.019)***		(0.004)***
Two or more races	-0.028	GPA (no math) >3.0 in their first term missing	-0.133
	(0.008)***		(0.012)***
Unknown race	-0.038	ShareUnitsEarned_25-50%	0.097
	(0.019)**		(0.007)***
Female	0.021	ShareUnitsEarned_50-75%	0.196
	(0.004)***		(0.007)***
Unknown gender	-0.002	ShareUnitsEarned_more than 75%	0.417
	(0.013)		(0.008)***
Non traditional age	0.088	ShareUnitsEarned_missing	0.343
	(0.007)***		(0.006)***
CPG or PELL recipient	-0.026	Special program participation	0
	(0.006)***		(0.016)
EOP&S students	-0.014	Attending multiple colleges	0.024
	(0.009)		(0.008)***
DSPS student	-0.056	Prior dual enrollment	0.034
	(0.008)***		(0.009)***
U.S. Citizen	-0.033	Transfer Goal	-0.007
	(0.006)***		(0.006)

NOTES: Fall 2019 cohort. Average marginal effects from probit regressions. N equal to 107,295. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. By multiplying the coefficients by 100 you get percentage points increases/decreases in the probability. Special program participation includes Mesa, Puente and Umoja. Share units earned is units earned as a share of units attempted (25% or less is the reference group). White students are the reference group for race/ethnicity in the regressions.

TABLE B13

BTL enrollment and outcomes

			All stude	ents			Students with a transfer goal					
Fall cohort	Student Group	Students enrolled in a BTL course	Distribution (%)	Annual growth (%)	Completed a TL course as next fall (%)	Students enrolled in a BTL course	Distribution (%)	Annual growth (%)	Completed a TL course as next fall (%)	intending students staring in a BTL (%)		
2017	All	237,643	100		17	160,931	100		19	68		
2018	All	196,440	100	-17	20	130,248	100	-19	22	66		
2019	All	71,415	100	-64	19	45,477	100	-65	23	64		
2020	All	50,279	100	-30	N/A	30,538	100	-33	N/A	61		
2017	Continuing	122,049	51		18	82,426	51		20	68		
2018	Continuing	101,575	52	-17	21	67,784	52	-18	24	67		
2019	Continuing	41,391	58	-59	21	26,726	59	-61	24	65		
2020	Continuing	25,461	51	-38	N/A	15,344	50	-43	N/A	60		
2017	New	115,594	49		15	78,505	49		18	68		
2018	New	94,865	48	-18	18	62,464	48	-20	20	66		
2019	New	30,024	42	-68	17	18,751	41	-70	20	62		
2020	New	24,818	49	-17	N/A	15,194	50	-19	N/A	62		

SOURCE: Authors' calculations using MIS data.

NOTES: Fall of each year. N/A is not applicable or not available.

FIGURE B11

43 percent of students pursuing BSTEM majors do not start in an algebra-based transfer-level course

Non-BSTEM major BST	EM major	
	Non-BSTEM major	BSTEM major
SLAM TL course	60%	27%
Below transfer-level	20%	16%
Calculus I	3%	15%
College Algebra	8%	14%
Trigonometry	3%	11%
Precalculus	2%	9%
Precalculus (2-course)	1%	3%
Applied Calculus	1%	3%
Precalculus & Trigonometry	1%	2%
Finite Math	1%	1%

SOURCE: Authors' calculations using MIS data.

NOTE: Percent distribution of first-time math, transfer-intending, students by starting course. Fall 2019 cohort. SLAM includes statistics offered in any department, liberal arts math, and math for teachers and quantitative reasoning. BSTEM (algebra-based courses) includes Calculus I, finite math, college algebra, pre-calculus, trigonometry, and applied calculus (i.e., calculus for business, social sciences, behavioral sciences, management, life sciences, and economics). See Appendix A for details about which majors where coded as BSTEM.

Appendix C. Qualitative Interview Analysis

C1. Description of Qualitative Analysis

Interview Protocol

To help elucidate our quantitative findings, we conducted 41 semi-structured interviews with community college faculty, staff, and administrators at 22 colleges. We purposefully selected colleges to be inclusive of different scales of implementation and rates of early enrollment and success post-AB 705. Specifically, in order to obtain a diverse pool of interviewees, we selected colleges based on several criteria including the level of (and change in) access to transfer-level courses, the proportion of students in corequisite support courses, the level of (and change in) one-term and one-year throughput rates, student success and persistence rates, and proportionality indexes across student outcomes.

Interviews were conducted over Zoom over the course of three months (April 2021 to June 2021) and were about one hour each. We asked each interviewee a variety of questions related to the implementation of AB 705, including but not limited to math/English placement policies and sequence offerings, changes to classroom experiences, pedagogy, and policies, the structure and characteristics of corequisite courses, holistic supports, math and English outcomes, racial equity, and professional development. Importantly, because our interviews took place during the Spring 2021 semester, when the shift to distance education as a result of COVID-19 had been in place for a year, we also asked about how the pandemic affected the implementation of AB 705, especially as it related to the online transition of courses and student services. We audio recorded and kept notes during each interview to accurately capture the observations and thoughts of each interviewee, as well as to synthesize themes, observations, and insights to investigate further and inform other interviews.

Interview Sample

In summary, our 41 interviews can be broken down into the following categories:

- 15 interviews with English instructors, department chairs, and AB 705 coordinators that focused on corequisites, classroom experiences, and assessment and placement practices
- 18 interviews with Mathematics instructors, department chairs, and AB 705 coordinators that focused on corequisites, classroom experiences and assessment and placement practices
- 5 interviews with student services staff and counselors that focused on holistic supports, and math and English assessment and placement practices
- 3 interviews with district-level administrators that focused on AB 705 implementation, resources needed, and alignment across reform efforts

In this report, we highlight findings from our interviews with math faculty. We provide some insights from student services staff, counselors, and district-level administrators when they are relevant to changes made to math placement policies or to the math student experience. Though we do not share findings from our interviews with English faculty, it is worth noting that in many cases, their thoughts, experiences, and concerns were similar to those shared by their math colleagues. At the same time, there are many insights that are math- or English-specific. In our companion report focused on English outcomes, planned to be released in spring 2022, we will share findings from our English faculty interviews and explore similarities and differences we uncover across the disciplines.

Additionally, some of the interview insights shared in this report derive from, or are further supported by, interviews initially conducted for some of our previous reports, most notably for our November 2020 report that examined early outcomes post-AB 705 (see Cuellar Mejia, et al. 2020). The implementation, structure, and

analysis of these interviews were identical, with the shared goal of obtaining a more nuanced understanding of how and why enrollment and success in transfer-level courses has varied across colleges due to changes to placement policies, course sequences, and academic supports.

Among our 18 math interviews (conducted with faculty at 14 different colleges), we find that the colleges represented in our sample are similar to the state average in various aspects, including the share of students with direct access to transfer-level math, corequisite enrollment and success rates, one-term throughput rates, and racial/ethnic demographics among first-time math students (Table C1). One key difference, however, is evident when examining average first-time math cohort sizes for the Fall 2019 term. Among the colleges represented in our interview sample, the average cohort size was 1,873 students, while the average cohort size for the state was 1,240 students. Nevertheless, while our interviews with math faculty may more accurately reflect experiences at larger colleges, our sample includes four colleges with below average first-time math cohort sizes, ensuring some representation among relatively smaller schools.

TABLE C1

Fall 2019 descriptive statistics for math interview sample compared to statewide average

	Statewide	Math Interviewees
Number of Colleges	114	14
Average first-time math fall 2019 cohort	1,240	1,873
Share of first-time math students starting directly in transfer-level (%)	79	75
Share of first-time math students in corequisite models (%)	16	17
Success rate among first-time corequisite students	46	48
Overall one-term throughput rate (%)	40	39
Share of Asian American students among first-time math students (%)	13	15
Share of Black students among first-time math students (%)	5	6
Share of Latino students among first-time math students (%)	52	53
Share of white students among first-time math students (%)	21	18

SOURCE: Authors' calculations using MIS data.

NOTE: See the glossary of terms in the main report for definitions.

Analytical Methods

In this study, we employ an explanatory sequential mixed methods design. This approach involves collecting and analyzing quantitative data and then explaining the quantitative results with in-depth qualitative data (Creswell and Plano Clark 2011; Ivankova, Creswell and Stick 2006). As part of the explanatory sequential mixed methods design, we used the research and findings from our current and prior research on AB 705 (see Cuellar Mejia et al. 2020) to construct controls for the regression models and to assist with site selection. Additionally, the qualitative research is used to help explain the how and why of implementation decisions at a group of colleges.

The qualitative analysis in this report is grounded by a social constructivist framework in which themes and main ideas are uncovered by interpreting the meaning derived by interviewees and relying on their points of view as experts, key stakeholders, and contributors to the situation of interest, in this case a post-AB 705 community college landscape (Creswell and Poth 2017). More specifically, we incorporate an inductive analytical method, developing ideas through a generalization of unique perspectives and insights into broader themes. Considering

the role researcher interpretation and individual interviewee experiences play in such a framework, it is important to note that the qualitative insights discussed below are co-constructed among several actors and reflect multiple realities that may be simultaneously true due to a wide diversity in environments and experiences.

Our qualitative analytical methods broadly followed a multi-step process that began once all interviews were completed. First, initial notes for each interview were updated and revised, and direct quotes were verified, using interview transcripts and Zoom recordings. Since at least one interviewer and one designated note-taker attended each interview, multiple researchers documented specific insights. Subsequent discussions among the research team provided opportunities to review and validate such insights. Once all notes were completed, common insights among interviewees were categorized into general themes, while one-off viewpoints or perspectives were documented as unique examples. The last step of the analytical process involved developing a narrative that accurately represented our interview findings, while also answering broad questions of interest and contextualizing the findings from our quantitative analysis. In the following sections, we present insights from our interviews with math faculty.

C2. Insights on the impact of the pandemic on AB 705 implementation

In the main report, we highlight how the pandemic affected math enrollment and success while colleges continued to implement placement and curricular changes in light of AB 705. Below, we use our qualitative findings to contextualize these impacts.

The decrease in first-time math enrollment

Our interviews with college math faculty, staff, and administrators shed light on some of the reasons why students were less likely to take math in fall 2020. We also identify how other key factors had already been contributing to this trend pre-pandemic, and how they were likely exacerbated as colleges moved instruction and supports online.

Disruptions and discouragement heightened by the pandemic. The disruptions brought on by the pandemic have likely heightened declines in first-term math enrollment. According to several faculty members, many students postponed taking math during the fall, instead choosing to wait until classes resumed face-to-face. Limited access to technology, basic resources, and in-person academic supports, among others all contributed to students' enrollment decisions. Additionally, students with math anxiety or concerns over potential workloads and stress management may have felt further discouraged from taking a transfer-level math course in an online setting. Though such circumstances undoubtedly intensified recent declines, more work is needed to understand the longer-term effects of the pandemic on first-time math enrollment, and the inequities it may have widened.

Concerns over large unit loads. Of primary importance are the possible unintended consequences of higher unit loads associated with taking corequisite courses—which can add as many as 3 more units to the transfer-level course. Specifically, students placed in corequisite courses may not be able to take on as many units in their first semester due to scheduling constraints or conflicts. These issues are exacerbated if students are placed in both math and English corequisites and when both of these courses are taught online. We found that when such cases come up, counselors and advisors may be encouraging students to start with English in order to lessen workloads and ease the college transition.²

Shorter math course sequences. The pre-AB705 "math pipeline of doom," as described by one math faculty member, has been transformed dramatically with the reduction of below transfer-level (BTL) course offerings.

² It is important to note that these concerns are not new and were also raised in our last study which examined fall 2019, the first-term of AB 705 implementation (Cuellar Mejia, et al. 2020).

Broadened access to statistics and liberal arts math (SLAM) courses, many of which only require a single course to fulfill the math requirement for non-BSTEM majors, ensure that students in SLAM pathways are no longer lingering in lengthy math sequences—lowering overall math enrollment. Additionally, shorter and more accessible math sequences may incentivize students to delay taking transfer-level math courses in their first term. Such reforms may have had the unintended consequence of further decreasing first-time math enrollment during the pandemic as many decided to delay math-taking in favor of waiting for classes to resume face-to-face, expecting that their academic trajectories would not be greatly altered.

Uncertainty about major and appropriate math pathway. Students' educational goals and majors also influence math course taking. Some faculty shared concerns that new placement policies and course recommendations lack clarity, especially with the abundance and variety of major and math pathway options available to students. As a result, some students, without clear and consistent advising, may be left uncertain about their optimal path, and thus delay their math enrollment until they are confident about their major and the course sequence most closely aligned with their intended program of study. The transition to online student services may have further exacerbated this issue, especially among students with uneven access to technology.

The rise in successful completions in transfer-level math

Our interviews with math faculty provide some additional insight into why one-term throughputs were higher during the pandemic than the previous year.

Instructors transformed policies and practices to accommodate students' needs. Prominently, given the constraints and disruptions caused by the pandemic, more than half (56%) of the math faculty we interviewed shared that they embraced a more flexible and student-centered class structure in the spring and fall 2020 terms. Faculty indicated that such changes to course policies and expectations were made with the goal of reducing workloads and stress among students, many of which were left in difficult positions to effectively continue their education. Inspired by increasing conversations around equity—some of which have occurred as a result of AB705—5 of 18 faculty also noted that they more deliberately incorporated the affective domain³ into their class and worked to elevate student voices by providing more avenues for feedback and discussion. Furthermore, mandatory distance education training instituted at the college-level provided math faculty with a broader set of teaching tools and a clearer understanding of how to conduct an online class.

Perhaps most importantly, many faculty members shared that they dramatically altered their grading policies in order to provide students' with more opportunities to succeed. Such changes included adding flexibility to due dates, accepting late assignments, and providing opportunities for make-up work. In line with recent conversations around grading for equity, faculty also embraced new ways of assessing their students. While some faculty changed grading systems to rely less on tests and more on group projects and presentations, others altered their assessments to emphasize critical thinking, problem solving, and active participation. One faculty member embraced open-note testing, finding that it took pressure off students to memorize material and helped address math and test anxiety.

Online setting worked for some students. At the same time, we learned that many students seemed to thrive in an online setting. Anecdotal evidence shared by 5 faculty members we interviewed highlighted that students benefitted greatly from widened access to online class materials, recorded lectures, and student supports such as tutoring and office hours. Additionally, students' ability to learn at their own pace, attend lectures

³ Refers to the use of strategies to help students acquire the skills needed to be a successful college student, help reduce students fear/anxiety, and increase their willingness to engage with their coursework (see Hern and Snell 2013).

asynchronously, and participate in more comfortable ways, seemed to reduce math anxiety and promote confidence among students with initial hesitations about taking transfer-level coursework.

It is important to keep in mind, however, that success in the online setting was limited to students who persisted through the fall semester. As one faculty member explained, students that have succeeded and taken advantage of class flexibility and online learning are those that have the resources, technology, and space to effectively study and work. Thus, how students are supported in a changing educational environment will remain an equity issue until all students are afforded the same opportunities to succeed. Still, the course outcomes we see in the fall 2020 term are promising, indicating that current reforms made to how courses are structured and offered can have positive effects on student learning. Encouragingly, many faculty members shared plans to carry on with classroom reforms inspired by the pandemic and continue to find ways to enhance learning environments for all students once in-person classes resume at their college.

Additional pandemic impacts on students, instructors, and policies

In addition to AB705-related outcomes, the pandemic impacted students' lives and the community college experience in other ways, likely affecting reforms and developments going forward.

Student supports. Given the gravity of the pandemic and its far reaching social, economic and health effects, CCC students faced heightened challenges over the last school year. Through our interviews, we consistently heard concerns from faculty, counselors, and administrators that the pandemic exacerbated inequities between students, especially in access to basic resources such as food, housing, and technology. Students without adequate access to technology, wifi, and study spaces were often unable to effectively complete online courses, forcing them to drop out and wait until face-to-face courses resume.

As 11 of the 18 math faculty members we interviewed noted, such inequities have elevated the importance of a compassionate approach to the classroom, providing the flexibility and resources students need to succeed given their challenging circumstances. Relatedly, the need for better holistic and wraparound supports, including accessible mental health counseling, is as great as ever. Both math and counseling faculty alike shared concerns that students not involved in special programs or learning communities are not effectively connected to resources on campus, and that a lack of coordination at the college have left students to fend for themselves. In some cases, schools were very proactive in increasing access to resources and providing effective outreach through early alert systems. Such initiatives will inevitably affect student outcomes, especially among new students with less experience navigating the community college system.

Enrollment in, and support for, BTL courses. More directly related to AB705, as with our last study, we found that multiple faculty members believe that the pandemic has strengthened support for BTL courses among some of their colleagues due to fears of learning loss. Such faculty cite the difficulties of conducting online math courses, especially corequisite courses in which group work, participation, and instructor-student relationships are key. They argue that BTL courses provide adequate time for certain students to catch up and receive the support they need. Through our interviews, we also found that while placement policies did not change much during the pandemic, the need for advising and guidance has increased as placement processes became entirely virtual and counseling more difficult to access. Given the complexities of placement guidelines at some schools, providing additional support in the enrollment process may be necessary in order to reduce self-placement into BTL courses.

Grading and assessments. Concerns over cheating have grown, becoming a greater issue during the shift to online learning. Specifically, questions have arisen on the ethics and necessity of proctoring online exams and requiring students to have their cameras on. At one college, a faculty member shared that while their department instituted one-on-one exams to combat online cheating, the shift actually inspired a broader conversation on the

alternative ways that students could be effectively assessed. Similarly, another faculty member shared that concerns at their school raised questions on why students were cheating and whether traditional assessments were inherently valuable to them. Accordingly, while the pandemic might have heightened initial fears of an online learning environment, it also sparked new discussions and ideas on how equity can be embedded into grading and assessment practices.

Professional development. Overall, conversations around equity have intensified since the implementation of AB705, and have increased more recently due to the need for broader online training. Most colleges instituted mandatory training in distance education over the summer of 2020 in order to effectively prepare their staff to be fully online in fall 2020. Through these trainings, which were generally provided by the college and/or individual departments, faculty gained experience using online tools, learned how to implement discussion boards and collaborative online workspaces, and received training on how to provide lectures and class materials online. In some cases, equity was embedded into these trainings, providing opportunities for staff to discuss how to incorporate affective domain modules into class time and provide academic supports for students with different needs. At one college, a faculty-led online webinar series was later redesigned into a wider-reaching "Teaching Success" initiative, furthering discussions and collaboration among faculty members with the goal of improving teaching practices more broadly. The prioritization of effective professional development will remain crucial once in-person classes resume.

C3. Insights on placement and enrollment: BTL courses and BSTEM

As highlighted in our quantitative analysis, access to, and completion of, transfer-level math coursework has increased dramatically as result of AB 705. Still, disparities remain, both between and within colleges. Below, we use our qualitative findings to explain why this might occur.

Persistence of BTL course enrollment

Three prominent themes emerged from our interviews with math faculty and student services staff as to why enrollments in BTL courses persist or are increasing at some colleges. It is important to highlight that this occurs despite research suggesting that all students, regardless of demographic group, special population status, and prior academic achievement, are more likely to succeed if given direct access to transfer-level math (Brohawn, Newell and Fagioli 2020; Hayward 2021).

Placement policies and practices. Through our interviews and extensive review of math placement policies, we found that some colleges have continued to institute a hard requirement, or strong recommendation, of BTL math for BSTEM math pathways, and even for some SLAM pathways. Such requirements usually target students with the lowest high school GPAs or who have not passed Intermediate Algebra in high school. Relatedly, our previous research found that colleges with lower access to transfer-level math are more likely to use guided self-placement (GSP) (Cuellar Mejia, et al. 2020). Older students, English learners and international students, who may not have access to high school transcripts are more likely to utilize GSP to determine their math placement, possibly leading to higher enrollment in BTL courses. In some cases, colleges actively promote and advise students to take Intermediate Algebra, noting that this course meets math requirements for an associate's degree—this occurs despite the fact that there are transfer-level math courses that would meet this same requirement and open the door to transfer if the student changes their educational goal.

Faculty support for BTL offerings. Among the low-access colleges we interviewed, respondents reported that about 1 in 4 math faculty members within their departments support keeping BTL courses to some degree, posing a formidable barrier to reducing or eliminating such courses. Most common is a strong belief among a subset of

instructors that such courses are necessary for students who lack the math skills to progress through rigorous higher-level math sequences—and while this sentiment is most notable in BSTEM, it also occurs in SLAM. At one school, the stretch model—where students first take a BTL course and subsequently a transfer-level course the next term—was implemented after seeing data that students in SLAM pathways were dropping off between the BTL and transfer-level courses. Thus, some view the adoption of new BTL courses as student success development. However, it must also be noted that other faculty we interviewed would have interpreted this same data as signaling the need to replace the pre-requisite remedial course with a corequisite, especially given the research suggesting that all student groups were less likely to complete transfer-level math if they begin in a BTL course (Brohawn, et al. 2021; Hayward 2021).

Messaging on course sequences. At some colleges, transfer-level courses are heavily promoted, and messaging to students is consistent among faculty and student support staff, with instructors and counselors reinforcing a message that all students can be successful in transfer-level math courses. In other colleges, BTL courses are promoted as a viable option for certain students, especially those in special programs and in certain majors. Stakeholders expressed concern that counselors and faculty who support BTL offerings play a large role in enrolling students in BTL courses despite efforts to improve access to transfer-level classes. While all of the counselors we interviewed expressed a commitment to placement reforms, several admitted finding it difficult to reconcile recommending transfer-level courses to students who voiced concerns about managing workloads and attempting rigorous coursework. Importantly, even counselors at low-access colleges acknowledged the critical importance of consistent advising and constant communication between counseling and the math department as key. These counselors stressed that all of the work put into reforming placement processes and course offerings is undermined if appropriate and consistent messaging is not executed. Without effective coordination, one counselor noted, "somebody is going to be confused, and you hope it is not the student."

Overrepresentation of marginalized students in BTL courses

Our report findings on why enrollments in BTL courses persist or are increasing at some colleges also help explain the overrepresentation of marginalized students in such courses. Here we provide further insight, informed by our faculty interviews, into why this happens.

Inconsistent advising and messaging. According to over a third (39%) of our interviewees, unclear advising, inconsistent messaging, and a misalignment of expectations between math faculty and counseling largely explain why many students still enroll in BTL courses. Some faculty hypothesized that this lack of college-level coordination affects underrepresented students more since they may not have the adequate institutional knowledge or resources to make up for informational gaps.

At the same time, students may be more frequently advised to take BTL courses if counselors express concerns over unit loads and college readiness. Such cases may be more common among low-income and historicallyunderrepresented students if they are more likely to be juggling work constraints or come from high schools with less access to college preparatory courses.

Insufficient academic supports. Still, even when courses are accessible, insufficient academic supports and encouragement may push students off the transfer-level math pathway. One faculty member cited high drop rates in the first few weeks of their Trigonometry with Support course, a course specifically designed for students with the lowest GPAs and/or math preparation. Anecdotally, this instructor found that students were finding the jump to transfer-level coursework, with minimal math preparation and external support, too difficult to overcome. Such experiences may be causing students from marginalized groups to under-enroll in STEM pathways and over-enroll in BTL courses, exposing a possible unintended consequence of new placement and course sequence

reforms. To address issues like this, more than half (56%) of the faculty members we interviewed expressed a need for their departments to work more closely with special programs that are already established on campus, such as PUENTE, MESA, and UMOJA, to better support underrepresented students.

Coordination among staff and faculty. As a result of these trends, some colleges have proactively responded by clarifying placement expectations among staff and providing training opportunities for counselors to improve advising to students. Instructors and counselors alike cited constant communication between their two departments as key to effectively broadening enrollment in transfer-level courses. As one counselor explained, at their college, buy in from both sides was necessary to effectively implement AB705 reforms– equalizing access required an alignment of goals among all relevant players in the placement process. Similarly, almost all counselors we interviewed have received some sort of equity-based training (through department based workshops and seminars or though conferences) or have been involved with consistent ongoing discussions and professional development revolved around equity. Most notably, they shared that specific training focused on reducing implicit bias and more equitably placing special populations (e.g., students with disabilities) has been helpful in reducing prerequisite math enrollments and increasing corequisite offerings. At one college, counselors explained that weekly meetings involving student support staff and math faculty have provided effective opportunities for staff to discuss student experiences, collaborate on best approaches to advise and coach, and learn how to encourage and develop growth mindsets among students.

Changes to, and disparities in, BSTEM pathways and outcomes

Our interviews with math faculty also shed light on how changes related to AB 705 have specifically affected access, enrollment, and success in BSTEM pathways.

Disparities in enrollment and persistence. About one in four faculty members we spoke to indicated that after the implementation of AB 705 they experienced increases in enrollments in higher-level math courses. At some schools, the number of calculus sections and above doubled or tripled. Math faculty at these colleges felt especially encouraged by the growth in BSTEM math enrollments because they were also leading to a more diverse student population in higher-level math courses, as well as other core courses, like Physics and Engineering. At the same time, some faculty expressed concerns that new placement policies may discourage enrollment in BSTEM courses among students with less math preparation. Anecdotal accounts of students dropping out of, or delaying enrollment in, transfer-level BSTEM courses signal a need to provide additional academic supports for historically underrepresented students that may be more prone to tracking out. At some colleges, where such trends are being tracked, continual improvement efforts have been made to address equity gaps, including redesigning corequisites, providing additional zero unit or non-credit support courses, incorporating embedded tutors, and emphasizing affective domain⁴ and growth mindset⁵.

Wide variation in placement policies and course sequences. More broadly, college-level disparities in access to BSTEM pathways seem to primarily reflect differences in placement policies. Following the state's placement guidelines, access to standalone BTSEM courses is much more strict than SLAM courses, with wide variation in how students with low GPAs and math preparation are placed. At some schools, such students are required to take a pre-requisite course, most commonly Intermediate Algebra, while at others they may only be required to take the transfer-level course with a linked corequisite. Similarly, the length of BSTEM course sequences varies across colleges. In an effort to reduce the number of course requirements for such majors, and promote enrollment, some

⁴ Refers to the use of strategies to help students acquire the skills needed to be a successful college student, help reduce students fear/anxiety, and increase their willingness to engage with their coursework (see Hern and Snell 2013).

⁵ Refers to the belief that talents or intelligence can be developed through things like hard work and practice (see Dweck 2016).

colleges have altered course outlines and unit loads, including combining two requirements, such as Trigonometry and Pre-calculus, into one course.

Ultimately, enrollment decisions are dependent on students' majors and are likely influenced by the messaging and advising they receive. At some colleges, all staff heavily promote BSTEM pathways and sufficient academic supports are in place to ensure persistence. In an attempt to minimize enrollment in BTL courses, other colleges emphasize SLAM pathways to students who are undecided on their major or who indicate hesitations over workloads and math sequence lengths.

Improving BSTEM classroom experiences. A primary concern expressed by most faculty was that implementing equity-minded changes to course content and policies is inherently difficult in BSTEM. Content-heavy course syllabi and stringent learning outcomes make it more difficult to embed culturally relevant topics in BSTEM than SLAM, where faculty have more freedom to implement project-based assessments and incorporate real-life events into course assignments and readings. Furthermore, as one faculty member explained, emphasis on affective domain and growth mindset may be more important in BSTEM, given the high levels of stereotype threat, math anxiety, and educational trauma present in the classroom.

Unfortunately, incorporating such activities require an investment of time, a resource which is already limited in content-heavy BSTEM courses. Despite these constraints, some colleges have effectively integrated academic supports within their BSTEM classrooms, improving outcomes among students in transfer-level courses. One way successful colleges have done this is by re-thinking the classroom experience in corequisite models, using time and resources deliberately to address the specific needs of students.

Importance of BSTEM programs. We also learned that across the state there are special programs helping to support student success in the BSTEM pipeline. Some of these efforts happen at colleges across the state and are funded by the system office, like the Mathematics, Engineering, and Science Achievement (MESA) program. MESA aims to support low-income and historically underrepresented students to pursue math and science majors by providing them with academic enrichment in STEM courses to help them successfully transfer to a four-year college. Other programs are college-based and typically funded by special grants, like Title V federal grants aimed to support STEM initiatives. Such is the case with the Palomar College STEM program, which aims to support STEM pathways through outreach, counseling, academic supports, and guaranteed admissions to CSU San Marcos.

Both the MESA and the Palomar College STEM programs provide good examples of how to support underrepresented populations through a multipronged support system, and in Palomar's case, that also includes intersegmental collaborations to help support the transfer goal. Several colleges shared plans for expanding outreach, including working more collaboratively with high schools, improving summer bridge and first-year experience programs, and creating alternate STEM pathways that do not follow a traditional calculus sequence. Moving forward, given that grant funding is supporting some initiatives, ensuring that programs are sustainable and done at scale will be critical as AB 705 helps to expand and diversify access to the BSTEM pathways.

Appendix D. Interrupted Time Series Analysis

D1. Description of Interrupted Time Series Analysis

In an effort to account for the student and college characteristics that may affect our descriptive findings for subsequent math enrollment and completion, we employ a comparative interrupted time series (ITS) design to examine how the implementation of AB 705 affected these outcomes in the spring 2020 and fall 2020 terms controlling for a variety of student and college characteristics.

Context and Rationale

Considering the strict fall 2019 implementation deadline for AB 705, we believe that ITS is especially fitting. ITS has been used by education research to examine school and system-wide reforms that affect all units when a new policy is implemented for all at a single point in time. A recent study of Florida's Senate Bill 1720 uses this approach. This law transformed developmental education at Florida community colleges by exempting recent high school graduates from placement testing, and effectively made developmental education optional, in addition to mandating that developmental education be accelerated (Park-Gaghan, Mokher, Hu, Spencer & Hu, 2020).

While traditional interrupted time series designs consist of a treatment being introduced at some known point in time, and about 100 observations of an outcome over time, the short interrupted time series can have as little as four observations of a single outcome over time (Somers, Zhu, Jacob & Bloom, 2012). Intuitively, the ITS design produces impact estimates by comparing student outcomes after AB 705 implementation to the outcomes that might have been expected based on pre-implementation trends. Particularly, the ITS approach uses a projection model based on the pattern of the outcomes that has been observed in pre-implementation years to obtain an estimate of the outcomes that would have been expected in the absence of the placement and curricular changes. The difference between the actual and projected outcomes provides an estimate of the causal impact of the reform. Furthermore, Somers, et. al. (2012) found that this methodology can produce results with strong internal validity.

Key Assumptions

Strong internal validity depends on the correct identification of the functional form of the relationship between time and the outcome (e.g. the projection model). Two key assumptions must also be made: 1) that student characteristics did not significantly change during the time of implementation; and 2) that the developmental education reform was the only significant change taking place that could affect the outcomes. If changes in student characteristics are suspected, controls for these changes can be included in the projection model. Furthermore, if other shocks or statewide initiatives with similar goals coincided with the start of the statewide implementation of AB 705, the observed change in outcomes would be partly or entirely due to these changes.

With respect to the first assumption, Figures D1 and D2 present graphical evidence that the trends in student characteristics remained steady prior to and after the reform period. Importantly, the college GPA covariates, which represent the share of students with a GPA of 3.0 or above, excluding math– the only consistent proxy of student ability over time – experienced no systematic deviations from the trend line during this period. Across all covariates examined, the only exceptions were for first-time college student, which appears to be slightly lower in the post-reform period. The dual enrollment and full-time student in first math term covariates also appear to be slightly higher post-reform. To help adjust for these changes, controls for these variables are included in our model, which we discuss more thoroughly in the following section.

On the second assumption, the key shock that occurred that could have affected our outcomes is the COVID-19 pandemic, which struck just as colleges were in the middle of implementing the second semester of AB 705. As seen in Figure D2, which displays our key outcomes over time, persistence from fall to spring did not change significantly, but persistence from fall to fall does appear to decline. This suggests that we can be more confident that the outcomes measured from fall to spring (e.g. subsequent math enrollment and completion to next spring) are not affected by the pandemic. However, fall to fall outcomes (e.g. subsequent math enrollment in fall) do appear to be affected and, thus, estimates on these outcomes should not be interpreted as causal.

Covariates: Prior Academic and Others by Relative Cohort Year

FIGURE D2

Outcomes over time

Enroll in Subseq. Math Next Spomplete Subseq. Math Next Sr Enroll in Subseq. Math Next Fal

D2. ITS Model and Results

Model Specifications

Next, we describe the model specifications used to examine subsequent math course enrollment and completion, as well as persistence into the spring and fall terms. This analysis uses consistent measures of our outcomes of interest over four years (e.g. 2015-2018) prior to fall 2019 to project what outcomes would have been without the reform one year after implementation (e.g. 2019). To account for temporal trends, the analysis also includes a continuous student cohort indicator—this variable helps net out any impacts that may have resulted from early adoption of reforms.

The regression models used to estimate the impacts of AB 705 are specified as follows:

Model 1: Baseline mean model

 $Y_i = a + b D_i + e_i$

Model 2: Regression adjusted linear baseline trend model, no covariates

 $Y_i = a + \mathbf{b} \mathbf{D}_i + \mathbf{c} t_i + d D_i * t_i + \mathbf{e}_i$

Model 3: Regression adjusted linear baseline trend model, with covariates

 $\mathbf{Y}_{i} = \mathbf{a} + \mathbf{b} \mathbf{D}_{i} + \mathbf{c} \mathbf{t}_{i} + d D_{i} * t_{i} + \Sigma \mathbf{g}_{i} \mathbf{X}_{i} + \mathbf{e}_{i}$

Model 4: Regression adjusted linear baseline trend model, with covariates and college fixed effects

 $Y_i = a + b D_i + c t_i + d D_i * t_i + \Sigma g_i X_i + CollegeFE + e_i$

Where,

Y_i = outcomes

a = the intercept or starting level of the outcome variable

b = impact estimate for the follow-up year, representing the average deviation of the outcome for that cohort from its projected counterfactual

 \mathbf{D}_{i} = equals one if student *i* was a member of the follow-up cohort and zero otherwise

c = estimate for the time trend

 $t_i = a \text{ counter for time that starts at 0 for the first year of study (e.g. 0=2015,..., 2019=5)}$

 $D_i * t_i =$ an interaction between the time trend and reform indicator, measuring the difference between pre-reform and post reform slopes

 g_i = estimate for covariates of student *i*

 X_i = pre-treatment covariates of student *i*

CollegeFE = college fixed effects that control for unobserved college specific policies and programs

 $e_i = error term for student i clustered at the college level$

In these models, *b* is our estimate of interest. It represents the impact estimate as the average deviation of the outcome for that cohort from its projected counterfactual Additionally, even though ITS specification allows us to measure the difference in pre and post-reform slopes if sufficient post-reform data is available, it must be noted that in our analysis, this interaction (D_i *t_i) is omitted. Since we only have one post-reform period, we are unable to assess the post-reform slope until more time periods become available.

Results

In the main report, we only discuss findings for the fully specified model 4, with summarized results provided in Table D1 and Table D2 below. Table D4 presents findings for all model specifications for the full sample that includes all students, while Table D5 presents complete results for the fully specified model by race and ethnicity. Estimates were robust to different specifications of the projection model in persistence outcomes. However, as expected based on our scatter plots, estimates are improved for access and throughput when we control for a time trend and covariates. Results for all outcomes and model specifications are available upon request.

Finally, robustness checks were conducted using a smaller 3 year baseline period (excluding 2018 or 2015); and by running alternative models where the reform period is set as 2017 or 2018. We find that results are robust to including and excluding academic years—but results are somewhat stronger when we exclude fall 2018, as expected given the early implementation of the reform that occurred during that academic year. Indeed, our findings also suggest that when we set 2018 as the reform start period, the early implementation of AB 705 at colleges across the state was also resulting in positive and significant impacts across our outcomes of interest. We opt to keep 2018 in the models given the short pre-reform time period included in our analysis, but acknowledge that the early implementation of AB 705 in 2018 dampens our estimates of AB 705 in fall 2019, when the law was fully implemented across the system.

TABLE D1

Persistence outcomes pre- and post-AB 705

	(1)	(2)	(3)	(4)	(5)
	Full Sample	Asian	Latino	Black	White
Persist to spring	-0.003	-0.001	0.001	-0.015	-0.011
	(0.003)	(0.005)	(0.003)	(0.011)	(0.004)**
Persist to fall	-0.034	-0.023	-0.042	-0.038	-0.026
	(0.005)***	(0.007)***	(0.004)***	(0.014)***	(0.006)***
Observations	533,586	69,761	276,832	26,587	119,358

Robust Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

SOURCE: Authors' calculations using MIS data.

NOTE: Restricted to students with a transfer goal and no previous college degree. Estimates presented are for the impact of AB 705 in the fully specified interrupted time series model that includes controls for the reform, time trend, student demographic and academic characteristics, college characteristics and college fixed effects.

TABLE D2

BSTEM students, and students of color specifically, see biggest boost in subsequent math course enrollment and success post-AB 705

	(1)	(2)	(3)	(4)	(5)	(6)
Subsequent Math Course	All Students	All BSTEM Majors	Latino BSTEM Majors	Black BSTEM Majors	White BSTEM Majors	Asian BSTEM Majors
Enroll, Next Spring	0.016	0.024	0.029	0.029	0.011	0.025
	(0.004)***	(0.009)***	(0.010)***	(0.015)*	(0.011)	(0.018)
Complete, Next Spring	0.012	0.019	0.024	0.024	0.010	0.020
	(0.003)***	(0.007)***	(0.007)***	(0.014)*	(0.011)	(0.015)
Enroll, Next Fall	0.019	0.029	0.033	0.038	0.016	0.030
	(0.004)***	(0.009)***	(0.010)***	(0.016)**	(0.012)	(0.018)*
Complete, Next Fall	0.014	0.02	0.024	0.025	0.006	0.027
	(0.003)***	(0.007)***	(0.008)***	(0.015)*	(0.012)	(0.016)*
Observations	533,586	173,268	80,107	7,489	41,152	30,408
Robust standard errors in par	entheses					

*** p<0.01, ** p<0.05, * p<0.1

SOURCE: Authors' calculations using MIS data.

NOTE: Restricted to students with a transfer goal and no previous college degree. Estimates presented are for the impact of AB 705 in the fully specified interrupted time series model that includes controls for the reform, time trend, student demographic and academic characteristics, college characteristics and college fixed effects.

TABLE D3

Wald chi-squared test across race/ethnic groups, by outcome

	Persist fall- to-spring	Persist fall- to-fall	Enroll in subsequent math, next spring	Complete subsequent math, next spring	Enroll in subsequent math, next fall	Complete subsequent math, next fall
Asian/Latino	-	4.21	-	-	-	
		(0.040)**				
Asian/White	-		-	-	-	
Asian/Black	-	-	-	-	-	
Latino/White	4.58	3.59	-	-	-	
	(0.032)**	(0.058)*				
Latino/Black	-	-	-	-	-	
White/Black	-	-	-	-	-	

*** p<0.01, ** p<0.05, * p<0.1

SOURCE: Authors' calculations using MIS data.

NOTES: SUEST stata command that runs the Wald chi-schared test for significance across groups. Each column represents an outcome, each row header indicates the racial/ethnic group comparison. Only statistically significant results are shown. Full results are available upon request.

TABLE D4

ITS regression results for different model specifications, by subsequent math course outcome

	Subsec	All Stud quent Math Er	lents nrollment, Sp	ring	Subse	All Stu equent Math (udents Completion, S	Spring	BSTEM Students Subsequent Math Enrollment, Spring				BSTEM Students Subsequent Math Completion, Spring			Spring
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 1	Model 2	Model 3	Model 4	Model 1	Model 2	Model 3	Model 4	Model 1	Model 2	Model 3	Model 4
AB705	0.047	0.031	0.029	0.016	0.036	0.025	0.022	0.012	0.074	0.056	0.052	0.024	0.056	0.043	0.040	0.019
	(0.003)***	(0.003)***	(0.003)***	(0.004)***	(0.003)***	(0.003)***	(0.003)***	(0.003)***	(0.006)***	(0.007)***	(0.006)***	(0.009)***	(0.005)***	(0.006)***	(0.005)***	(0.007)***
Time		0.006	0.005	0.004		0.005	0.004	0.003		0.007	0.006	0.005		0.005	0.004	0.003
		(0.001)***	(0.001)***	(0.001)***		(0.001)***	(0.001)***	(0.001)***		(0.002)***	(0.002)***	(0.002)***		(0.001)***	(0.001)***	(0.001)***
Black			-0.097	-0.085			-0.082	-0.071			-0.111	-0.093			-0.099	-0.083
			(0.006)***	(0.004)***			(0.006)***	(0.004)***			(0.009)***	(0.006)***			(0.008)***	(0.005)***
Latino			-0.085	-0.076			-0.075	-0.066			-0.089	-0.078			-0.082	-0.071
			(0.007)***	(0.004)***			(0.007)***	(0.004)***			(0.009)***	(0.005)***			(0.009)***	(0.005)***
Native American			-0.094	-0.084			-0.081	-0.070			-0.116	-0.101			-0.103	-0.088
			(0.008)***	(0.005)***			(0.007)***	(0.005)***			(0.014)***	(0.012)***			(0.013)***	(0.010)***
Pacific Islander			-0.086	-0.081			-0.081	-0.075			-0.104	-0.094			-0.102	-0.093
			(0.007)***	(0.006)***			(0.007)***	(0.006)***			(0.011)***	(0.010)***			(0.011)***	(0.009)***
Two or more races			-0.060	-0.058			-0.055	-0.052			-0.057	-0.053			-0.054	-0.049
			(0.005)***	(0.004)***			(0.005)***	(0.004)***			(0.008)***	(0.005)***			(0.008)***	(0.005)***
White			-0.056	-0.054			-0.050	-0.046			-0.049	-0.045			-0.047	-0.041
			(0.007)***	(0.004)***			(0.007)***	(0.004)***			(0.009)***	(0.005)***			(0.009)***	(0.005)***
Race unknown			-0.045	-0.043			-0.036	-0.033			-0.041	-0.043			-0.035	-0.033
			(0.011)***	(0.008)***			(0.012)***	(0.009)***			(0.011)***	(0.010)***			(0.012)***	(0.010)***
Sex: Female			-0.027	-0.027			-0.018	-0.017			-0.016	-0.016			-0.007	-0.007
			(0.001)***	(0.001)***			(0.001)***	(0.001)***			(0.003)***	(0.003)***			(0.002)***	(0.002)***
Sex: Unknown			-0.018	-0.017			-0.013	-0.012			-0.010	-0.011			-0.005	-0.004
			(0.004)***	(0.003)***			(0.003)***	(0.003)***			(0.008)	(0.007)			(0.006)	(0.007)
Non- Traditional Age			-0.035	-0.032			-0.029	-0.027			-0.061	-0.054			-0.049	-0.044
			(0.003)***	(0.002)***			(0.002)***	(0.002)***			(0.005)***	(0.004)***			(0.004)***	(0.003)***
Prior Ed: Adult			-0.026	-0.023			-0.024	-0.021			-0.056	-0.050			-0.053	-0.048

	All Students Subsequent Math Enrollment, Sp	ring	All Students Subsequent Math Completion,	Spring	BSTEM Students Subsequent Math Enrollment,	Spring	BSTEM Students pring Subsequent Math Completion, St	
education student								
	(0.014)*	(0.011)**	(0.013)*	(0.011)*	(0.017)***	(0.016)***	(0.017)***	(0.016)***
Prior Ed: HS diploma	-0.005	-0.005	-0.010	-0.010	0.002	0.002	-0.010	-0.009
	(0.012)	(0.009)	(0.012)	(0.010)	(0.011)	(0.009)	(0.013)	(0.011)
Prior Ed: GED	-0.002	-0.003	-0.005	-0.005	-0.005	-0.010	-0.009	-0.014
	(0.013)	(0.010)	(0.013)	(0.010)	(0.013)	(0.011)	(0.015)	(0.013)
Prior Ed: CA HS Proficiency Cert.	0.020	0.019	0.016	0.015	0.036	0.035	0.026	0.025
	(0.014)	(0.012)	(0.013)	(0.012)	(0.017)**	(0.015)**	(0.017)	(0.016)
Prior Ed: Foreign HS degree	0.032	0.029	0.032	0.029	0.031	0.025	0.031	0.023
	(0.016)**	(0.012)**	(0.016)**	(0.012)**	(0.015)**	(0.012)**	(0.017)*	(0.014)*
Prior Ed: Unknown	-0.004	0.003	-0.005	0.001	-0.004	0.005	-0.005	0.003
	(0.012)	(0.010)	(0.012)	(0.010)	(0.013)	(0.012)	(0.015)	(0.014)
CPG or PELL recipient	-0.015	-0.010	-0.013	-0.008	-0.021	-0.012	-0.018	-0.010
	(0.002)***	(0.001)***	(0.002)***	(0.001)***	(0.004)***	(0.002)***	(0.004)***	(0.002)***
EOP&S student	-0.003	-0.000	-0.003	-0.000	-0.003	0.002	-0.002	0.002
	(0.002)	(0.002)	(0.002)	(0.002)	(0.004)	(0.004)	(0.003)	(0.003)
Learning disability	-0.026	-0.028	-0.019	-0.021	-0.034	-0.036	-0.025	-0.027
	(0.002)***	(0.002)***	(0.001)***	(0.002)***	(0.004)***	(0.004)***	(0.004)***	(0.004)***
U.S. Citizen	-0.028	-0.026	-0.026	-0.025	-0.029	-0.025	-0.030	-0.029
	(0.003)***	(0.003)***	(0.003)***	(0.003)***	(0.003)***	(0.004)***	(0.004)***	(0.004)***
English learner	-0.006	-0.008	-0.002	-0.004	-0.003	-0.008	-0.000	-0.005
	(0.008)	(0.007)	(0.008)	(0.006)	(0.016)	(0.013)	(0.015)	(0.012)
Foster child	-0.013	-0.015	-0.009	-0.011	-0.032	-0.034	-0.021	-0.024
	(0.003)***	(0.003)***	(0.002)***	(0.002)***	(0.007)***	(0.006)***	(0.006)***	(0.006)***
Participated in special program	0.053	0.054	0.039	0.040	0.061	0.066	0.045	0.050
	(0.010)***	(0.010)***	(0.009)***	(0.009)***	(0.012)***	(0.012)***	(0.012)***	(0.012)***

	Subse	All Stuc quent Math E	lents nrollment, Sp	oring	Subse	All St equent Math	udents Completion,	Spring	Subs	BSTEM equent Math	Students Enrollment,	Spring	Subse	BSTEM aquent Math	Students Completion, S	Spring
First-time in college student			0.006	0.004			0.002	0.001			0.004	0.003			-0.001	-0.001
			(0.002)***	(0.001)***			(0.002)	(0.001)			(0.003)	(0.003)			(0.003)	(0.002)
Attended full- time first-term			0.032	0.028			0.025	0.023			0.052	0.046			0.042	0.037
			(0.002)***	(0.002)***			(0.002)***	(0.001)***			(0.003)***	(0.003)***			(0.003)***	(0.002)***
Attended multiple colleges			0.020	0.013			0.018	0.012			0.015	0.011			0.014	0.012
			(0.005)***	(0.002)***			(0.004)***	(0.002)***			(0.007)**	(0.004)***			(0.005)***	(0.004)***
Prior dual enrollee			0.022	0.021			0.016	0.016			0.030	0.026			0.022	0.020
			(0.003)***	(0.003)***			(0.003)***	(0.002)***			(0.006)***	(0.005)***			(0.006)***	(0.005)***
GPA 3.0 First Term, Excl. Math			0.067	0.066			0.061	0.060			0.116	0.115			0.108	0.107
			(0.003)***	(0.003)***			(0.003)***	(0.003)***			(0.004)***	(0.004)***			(0.004)***	(0.004)***
Constant				-0.018				-0.015				-0.023				-0.029
				(0.018)				(0.013)				(0.030)				(0.020)
Model controls for:																
Reform	х	х	х	х	х	Х	х	Х	х	Х	Х	х	х	х	Х	х
Time Trend		х	х	х		Х	х	х		х	Х	х		х	х	х
Student and academic characteristics			х	х			х	х			х	х			х	х
College characteristics and fixed effects				x				х				x				x
Observations	535,258	535,258	533,760	533,586	535,258	535,258	533,760	533,586	173,810	173,810	173,310	173,268	173,810	173,810	173,310	173,268
R-squared	0.005	0.005	0.057	0.070	0.004	0.004	0.055	0.066	0.007	0.008	0.070	0.086	0.005	0.006	0.070	0.085

NOTE: Restricted to students with a transfer goal and no previous college degree. Estimates present results for the different model specifications listed in the Interrupted Time Series empirical strategy description in Technical Appendix D (models 1-4). Note that the models control for college characteristics and fixed effects, but these are excluded for length, these results are available upon request.

TABLE D4, CONTINUEDITS regression results for different model specifications, by subsequent math course outcome

	Subs	BSTEM : equent Matl	Students h Enrollmen	t, Fall	BSTEM Students Subsequent Math Completion, Fall					
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 1	Model 2	Model 3	Model 4		
AB705	0.084	0.062	0.058	0.029	0.064	0.048	0.043	0.02		
	(0.006)** *	(0.007)** *	(0.006)**	(0.009)** *	(0.005)** *	(0.006)** *	(0.005)** *	(0.007)**		
Time		0.009	0.007	0.006		0.007	0.005	0.004		
		(0.002)**	(0.002)**	(0.002)**		(0.002)**	(0.001)**	(0.001)** *		
Black			-0.125	-0.107			-0.117	-0.1		
			(0.008)** *	(0.006)** *			(0.008)** *	(0.005)** *		
Latino			-0.101	-0.091			-0.098	-0.087		
			(0.009)** *	(0.005)** *			(0.009)** *	(0.005)** *		
Native American			-0.130	-0.117			-0.122	-0.107		
			(0.014)**	(0.012)**			(0.013)**	(0.011)**		
Pacific Islander			-0.116	-0.106			-0.12	-0.11		
			(0.012)**	(0.011)**			(0.011)**	(0.010)**		
Two or more races			-0.063	-0.061			-0.065	-0.061		
			(0.008)** *	(0.006)**			(0.008)** *	(0.006)**		
White			-0.055	-0.053			-0.054	-0.05		
			(0.009)** *	(0.005)** *			(0.009)** *	(0.005)** *		
Race unknown			-0.040	-0.045			-0.036	-0.037		
			(0.013)**	(0.012)**			(0.014)**	(0.013)**		
Sex: Female			-0.013	-0.012			-0.006	-0.006		
			(0.003)** *	(0.003)** *			(0.002)**	(0.002)**		
Sex: Unknown			-0.010	-0.011			-0.006	-0.006		
			(0.008)	(0.008)			-0.007	-0.007		
Non-Traditional Age			-0.069	-0.062			-0.06	-0.054		
			(0.005)** *	(0.004)** *			(0.005)** *	(0.004)**		
Prior Ed: Adult education student			-0.052	-0.043			-0.047	-0.039		
			(0.021)**	(0.019)**			(0.021)**	(0.019)**		
Prior Ed: HS diploma			0.001	0.004			-0.008	-0.005		
			(0.014)	(0.011)			-0.015	-0.013		
Prior Ed: GED			-0.010	-0.012			-0.01	-0.012		
			(0.017)	(0.013)			-0.018	-0.014		
Prior Ed: CA HS Proficiency Cert.			0.033	0.035			0.025	0.026		
			(0.019)*	(0.017)**			-0.02	-0.018		
Prior Ed: Foreign HS degree			0.030	0.029			0.032	0.028		
			(0.019)	(0.015)*			-0.02	(0.016)*		
Prior Ed: Unknown			-0.007	0.005			-0.007	0.004		

	Subs	BSTEM Students				BSTEM Students Subsequent Math Completion, Fall					
	3003	equent man	(0.016)	(0.014)	3005	equent man		-0.015			
CPG or PELL recipient			-0.024	-0.015			-0.017	-0.013			
			(0.004)**	(0.002)**			(0.004)**	(0.002)**			
			*	*			*	*			
EOP&S student			-0.006	-0.001			-0.004	0			
			(0.005)	(0.004)			-0.004	-0.004			
Learning disability			-0.041	-0.043			-0.032	-0.035			
			(0.005)** *	(0.005)** *			(0.004)**	(0.004)**			
U.S. Citizen			-0.034	-0.029			-0.036	-0.033			
			(0.004)** *	(0.004)** *			(0.004)** *	(0.004)** *			
English learner			-0.009	-0.013			-0.006	-0.01			
			(0.016)	(0.013)			-0.015	-0.013			
Foster child			-0.038	-0.040			-0.029	-0.031			
			(0.008)** *	(0.007)** *			(0.007)**	(0.006)**			
Participated in special program			0.058	0.063			0.046	0.052			
			(0.012)**	(0.012)**			(0.013)**	(0.013)**			
First-time in college student			0.005	0.005			0.001	0.001			
			(0.003)	(0.003)*			-0.003	-0.002			
Attended full-time first-term			0.058	0.051			0.05	0.045			
			(0.003)**	(0.003)**			(0.003)** *	(0.003)** *			
Attended multiple colleges			0.018	0.014			0.018	0.014			
			(0.007)**	(0.004)**			(0.006)**	(0.004)**			
Prior dual enrollee			0.036	0.031			0.029	0.026			
			(0.006)**	(0.005)**			(0.006)**	(0.005)**			
GPA 3.0 First Term, Excl. Math			0.133	0.131			0.128	0.126			
			(0.004)**	(0.004)**			(0.004)**	(0.004)**			
Constant				-0.041				-0.036			
				(0.035)				-0.023			
Model controls for:											
Reform	Х	х	х	х	х	х	х	х			
Time Trend		х	х	х		х	х	х			
Student and academic characteristics			х	Х			х	Х			
College characteristics and fixed effects				Х				Х			
Observations	173,810	173,810	173,310	173,268	173,810	173,810	173,310	173,268			
R-squared	0.008	0.009	0.080	0.096	0.006	0.006	0.082	0.096			

NOTE: Restricted to students with a transfer goal and no previous college degree. Estimates present results for the different model specifications listed in the Interrupted Time Series empirical strategy description in Technical Appendix D (models 1-4). Note that the models control for college characteristics and fixed effects, but these are excluded for length, these results are available upon request.

TABLE D5

ITS regression results for subsequent math course outcome, by race/ethnicity

	Subsequent Math Enrollment, Spring			, Spring	Subse	Subsequent Math Completion, Spring				Subsequent Math Enrollment, Fall				Subsequent Math Completion, Fall			
VARIABLES	Asian	Latino	Black	White	Asian	Latino	Black	White	Asian	Latino	Black	White	Asian	Latino	Black	White	
AB705	0.025	0.029	0.029	0.011	0.020	0.024	0.024	0.010	0.030	0.033	0.038	0.016	0.027	0.024	0.025	0.006	
	(0.011)* *	(0.005)*	(0.014)*	(0.008)	(0.011)*	(0.004)*	(0.012)* *	Note(0.00 7)	(0.012)* *	(0.005)*	(0.015)*	(0.009)*	(0.011)* *	(0.005)*	(0.013)*	(0.008)	
Time	0.006	0.005	0.002	0.005	0.005	0.002	0.002	0.002	0.007	0.006	0.002	0.004	0.006	0.004	0.001	0.002	
	(0.002)* *	(0.001)*	(0.003)	(0.002)*	(0.002)* *	(0.001)* *	(0.003)	(0.002)	(0.003)*	(0.001)*	(0.003)	(0.002)* *	(0.002)* *	(0.001)*	(0.003)	(0.002)	
Sex: Female	-0.008	-0.022	-0.004	-0.015	-0.001	-0.011	0.001	-0.008	-0.001	-0.020	-0.003	-0.013	0.006	-0.012	-0.003	-0.006	
	(0.005)*	(0.002)*	(0.006)	(0.004)*	(0.005)	(0.002)*	(0.005)	(0.003)**	(0.005)	(0.002)*	(0.006)	(0.004)*	(0.005)	(0.002)*	(0.006)	(0.004)*	
Sex: Unknown	-0.015	-0.011	-0.004	-0.002	-0.014	-0.002	0.011	0.006	-0.011	-0.015	-0.013	-0.002	-0.021	-0.005	-0.005	0.014	
	(0.024)	(0.011)	(0.029)	(0.015)	(0.022)	(0.009)	(0.024)	(0.014)	(0.025)	(0.012)	(0.031)	(0.016)	(0.024)	(0.010)	(0.027)	(0.015)	
Non- Traditional Age	-0.078	-0.035	-0.033	-0.064	-0.066	-0.027	-0.025	-0.048	-0.083	-0.041	-0.036	-0.072	-0.077	-0.034	-0.030	-0.060	
	(0.011)*	(0.005)*	(0.009)*	(0.006)*	(0.010)* **	(0.004)*	(0.008)* **	(0.006)***	(0.011)*	(0.005)*	(0.010)* **	(0.007)* **	(0.011)*	(0.005)* **	(0.009)* **	(0.006)*	
Prior Ed: Adult education student	-0.035	-0.026	0.025	-0.105	-0.022	-0.016	-0.067	-0.086	-0.021	-0.015	0.027	-0.097	-0.018	0.000	-0.014	-0.090	
	(0.040)	(0.024)	(0.062)	(0.040)*	(0.038)	(0.021)	(0.052)	(0.036)**	(0.042)	(0.025)	(0.066)	(0.042)* *	(0.040)	(0.022)	(0.058)	(0.039)* *	
Prior Ed: HS diploma	0.007	0.016	0.007	0.011	0.004	0.012	0.000	0.002	0.027	0.018	0.016	0.009	0.018	0.016	0.012	0.002	
	(0.019)	(0.011)	(0.027)	(0.017)	(0.018)	(0.009)	(0.023)	(0.016)	(0.020)	(0.011)	(0.029)	(0.018)	(0.019)	(0.010)	(0.025)	(0.017)	
Prior Ed: GED	0.017	0.000	0.000	-0.007	0.019	0.007	-0.004	-0.016	0.031	-0.001	0.015	-0.019	0.036	0.011	0.009	-0.022	
	(0.023)	(0.013)	(0.032)	(0.020)	(0.022)	(0.012)	(0.027)	(0.018)	(0.024)	(0.014)	(0.034)	(0.021)	(0.023)	(0.013)	(0.030)	(0.020)	
Prior Ed: CA HS Proficiency Cert.	0.058	0.009	0.078	0.051	0.041	0.014	0.069	0.048	0.083	0.007	0.089	0.045	0.056	0.015	0.078	0.043	
	(0.027)*	(0.016)	(0.038)*	(0.022)*	(0.026)	(0.014)	(0.032)*	(0.020)**	(0.028)*	(0.017)	(0.040)*	(0.023)*	(0.027)*	(0.015)	(0.035)*	(0.021)*	
Prior Ed: Foreign HS degree	0.028	0.044	0.043	0.017	0.028	0.050	0.044	0.015	0.051	0.048	0.039	0.013	0.049	0.063	0.045	0.011	

	Subsequent Math Enrollment, Spring			, Spring	Subse	Subsequent Math Completion, Spring			Subsequent Math Enrollment, Fall				Subsequent Math Completion, Fall			
	(0.020)	(0.016)*	(0.032)	(0.020)	(0.019)	(0.014)*	(0.027)*	(0.018)	(0.021)* *	(0.017)*	(0.034)	(0.021)	(0.020)* *	(0.015)* **	(0.030)	(0.020)
Prior Ed: Unknown	0.007	0.014	0.018	0.007	0.019	0.018	-0.010	0.000	0.026	0.010	0.019	-0.002	0.031	0.015	0.009	-0.012
	(0.022)	(0.013)	(0.033)	(0.022)	(0.021)	(0.011)	(0.028)	(0.020)	(0.023)	(0.014)	(0.035)	(0.023)	(0.022)	(0.012)	(0.031)	(0.021)
CPG or PELL recipient	-0.001	-0.016	-0.022	-0.009	-0.003	-0.012	-0.020	-0.008	-0.004	-0.018	-0.025	-0.011	-0.004	-0.014	-0.024	-0.009
	(0.005)	(0.002)*	(0.007)*	(0.004)* *	(0.005)	(0.002)*	(0.006)*	(0.003)**	(0.005)	(0.003)*	(0.007)*	(0.004)*	(0.005)	(0.002)*	(0.006)*	(0.004)* *
EOP&S student	0.004	0.004	0.000	0.006	0.005	0.003	-0.008	0.009	0.003	-0.001	0.004	0.005	0.006	-0.000	-0.006	0.009
	(0.010)	(0.004)	(0.010)	(0.009)	(0.009)	(0.003)	(0.008)	(0.008)	(0.010)	(0.004)	(0.010)	(0.009)	(0.010)	(0.003)	(0.009)	(0.008)
Learning disability	-0.048	-0.036	-0.039	-0.034	-0.041	-0.023	-0.028	-0.031	-0.058	-0.043	-0.041	-0.040	-0.052	-0.030	-0.029	-0.038
	(0.018)*	(0.006)*	(0.013)* **	(0.008)* **	(0.017)* *	(0.005)*	(0.011)* *	(0.007)***	(0.019)* **	(0.006)*	(0.014)*	(0.009)*	(0.018)*	(0.005)*	(0.012)* *	(0.008)*
U.S. Citizen	-0.033	-0.005	-0.037	-0.045	-0.040	-0.005	-0.040	-0.049	-0.041	-0.006	-0.047	-0.041	-0.045	-0.007	-0.049	-0.049
	(0.006)*	(0.004)	(0.013)* **	(0.008)* **	(0.006)*	(0.003)*	(0.011)*	(0.007)***	(0.006)*	(0.004)	(0.014)*	(0.008)* **	(0.006)*	(0.003)*	(0.012)* **	(0.008)*
English learner	0.000	-0.023	0.031	-0.054	0.005	-0.019	0.011	-0.050	-0.005	-0.032	0.047	-0.053	-0.002	-0.021	0.062	-0.057
	(0.009)	(0.010)* *	(0.029)	(0.014)*	(0.008)	(0.009)* *	(0.025)	(0.013)***	(0.009)	(0.011)* **	(0.031)	(0.015)*	(0.009)	(0.010)* *	(0.027)* *	(0.014)*
Foster child	-0.069	-0.028	-0.021	-0.040	-0.070	-0.021	-0.008	-0.033	-0.070	-0.034	-0.029	-0.049	-0.077	-0.025	-0.016	-0.043
	(0.036)*	(0.011)* *	(0.016)	(0.019)* *	(0.034)* *	(0.010)* *	(0.014)	(0.017)*	(0.037)*	(0.012)* **	(0.017)*	(0.020)* *	(0.036)* *	(0.010)* *	(0.015)	(0.018)* *
Participated in special program	0.025	0.083	0.036	0.119	0.032	0.066	0.017	0.085	0.034	0.075	0.043	0.115	0.047	0.063	0.030	0.093
	(0.024)	(0.008)* **	(0.014)* *	(0.023)*	(0.022)	(0.007)*	(0.012)	(0.020)***	(0.025)	(0.008)*	(0.015)* **	(0.024)*	(0.024)*	(0.007)*	(0.013)* *	(0.022)*
First-time in college student	0.008	0.001	0.018	0.001	0.003	-0.004	0.009	-0.000	0.010	0.001	0.017	0.003	0.004	-0.003	0.009	0.004
	(0.005)	(0.002)	(0.006)*	(0.004)	(0.005)	(0.002)* *	(0.005)*	(0.004)	(0.006)*	(0.003)	(0.007)* *	(0.004)	(0.005)	(0.002)	(0.006)	(0.004)
Attended full- time first-term	0.060	0.041	0.020	0.053	0.052	0.032	0.011	0.041	0.063	0.046	0.021	0.059	0.061	0.039	0.017	0.050
	(0.007)*	(0.003)*	(0.007)*	(0.004)*	(0.006)*	(0.002)*	(0.006)*	(0.004)***	(0.007)*	(0.003)*	(0.007)*	(0.005)*	(0.007)*	(0.002)*	(0.006)*	(0.004)*
Attended multiple colleges	0.009	0.014	0.003	0.006	0.009	0.010	0.009	0.012	0.019	0.015	-0.000	0.007	0.018	0.012	0.006	0.012
	(0.008)	(0.004)*	(0.009)	(0.006)	(0.008)	(0.004)*	(0.008)	(0.006)**	(0.008)* *	(0.004)*	(0.010)	(0.006)	(0.008)* *	(0.004)*	(0.009)	(0.006)* *

	Subsequent Math Enrollment, Spring			Subse	quent Math	Completio	n, Spring	g Subsequent Math Enrollment, Fall				Subsequent Math Completion, Fall				
Prior dual enrollee	0.027	0.022	0.044	0.028	0.022	0.018	0.034	0.019	0.027	0.027	0.065	0.035	0.023	0.024	0.043	0.027
	(0.009)*	(0.004)*	(0.013)*	(0.006)*	(0.009)*	(0.003)*	(0.011)*	(0.005)***	(0.010)*	(0.004)*	(0.013)*	(0.006)*	(0.009)* *	(0.004)*	(0.012)*	(0.006)*
GPA 3.0 First Term, Excl. Math	0.129	0.103	0.075	0.126	0.134	0.091	0.059	0.119	0.148	0.118	0.085	0.143	0.154	0.109	0.071	0.141
	(0.005)*	(0.002)*	(0.006)*	(0.004)*	(0.005)*	(0.002)*	(0.005)*	(0.003)***	(0.005)*	(0.002)*	(0.006)*	(0.004)*	(0.005)*	(0.002)*	(0.006)*	(0.004)*
Constant	-0.059	-0.149	-0.089	-0.177	-0.036	-0.083	-0.062	-0.129	-0.079	-0.158	-0.091	-0.206	-0.053	-0.104	-0.054	-0.171
	(0.075)	(0.018)*	(0.040)* *	(0.026)*	(0.070)	(0.015)*	(0.033)*	(0.023)***	(0.078)	(0.019)*	(0.042)* *	(0.027)*	(0.074)	(0.017)* **	(0.037)	(0.025)*
Model controls for:																
Reform	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
Time Trend	х	Х	х	Х	Х	х	х	Х	х	Х	Х	Х	Х	Х	Х	х
Student and academic characteristics	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
College characteristics and fixed effects	x	х	х	х	х	х	х	х	х	х	x	х	x	x	х	х
Observations	30,408	80,107	7,489	41,152	30,408	80,107	7,489	41,152	30,408	80,107	7,489	41,152	30,408	80,107	7,489	41,152
R-squared	0.070	0.068	0.093	0.074	0.076	0.060	0.087	0.072	0.077	0.076	0.099	0.083	0.082	0.069	0.092	0.082

NOTE: Restricted to students with a transfer goal and no previous college degree. Estimates present results for the fully specified Model 4 Interrupted Time Series model. Note that the models control for college characteristics and fixed effects, but these are excluded for length, these results are available upon request.

Appendix E. Corequisite Remediation Analysis

E1. Description of Corequisite Remediation Analysis

AB 705 and Corequisite Remediation

A critical question in light of AB 705 implementation is how best to provide additional academic support for students who might not be fully prepared for a transfer-level math course. Many – but not all – colleges have opted to provide corequisite courses that are taken at the same time as the transfer-level course. System-wide, the share of first-time transfer math students in a corequisite course increased from 3% in fall 2018 to 21% in fall 2019 (and 20% in fall 2020). Colleges have varied dramatically in their adoption of the corequisite course approach: 17 colleges have no corequisite courses in math, while three colleges (Lassen, Merritt, and East Los Angeles) enroll about two-thirds of their first-time transfer level math students in a corequisite course (in fall 2020). Corequisite courses come in many forms, and placement advice to students about corequisite courses varies across the system (Cuellar Mejia, Rodriguez, and Johnson 2020). By far the most common corequisite course is for students who take statistics in the SLAM pathway.

Context for Analysis

Here, we seek to determine how much of the increase in throughput rates post AB 705 is due to the effectiveness of corequisite support and how much is because students were given direct access to transfer-level courses. Making that determination is important – given the extent of corequisite courses – but difficult. Our data do not include high school records so we cannot control for that aspect of selection into corequisite courses.⁶ Moreover, some colleges still use prerequisite remediation while others use it very sparingly, further complicating the selection into pre-requisite remediation. Because of these complications, our analyses of the effect of corequisite courses on student success cannot be considered causal.

For our analyses, we use statistical models to control for differences in student characteristics (and other factors, as described below). Our earlier findings clearly show that requiring students to take prerequisite developmental math courses is almost always detrimental to eventual completion of a gateway transfer-level math course. However, it is not clear if students are better served by taking the transfer-level course alone or along with a corequisite course (or whether other types of student supports are more effective than corequisite courses).

One study of math students in Tennessee found that those who took a math (including statistics) corequisite course did not complete the gateway transfer-level course at rates higher than their otherwise similar counterparts who took the course without a corequisite, but did have much higher rates of success than those counterparts who started in prerequisite remediation (Ran and Lin, 2019).⁷ Their primary finding is that the positive effects of corequisite reform relative to prerequisite remediation "were largely driven by efforts to guide students not interested in a STEM program to take statistics, math for liberal arts, or other types of math that align with their program."

⁶ Although, we do control for students' college GPA in non-math courses. Other data show that high school GPA and college GPA are highly correlated.

⁷ Ran and Lin (2019) had better data than we do. Because they had information on academic performance prior to entering college (ACT scores), they were able to use regression discontinuity and difference-in-regression-discontinuity designs. Notably, they did find that students who took a corequisite were more likely to take and pass a subsequent math course. See https://ccrc.tc.columbia.edu/media/k2/attachments/effects-corequisite-remediation-tennessee.pdf .

E2. Results and Discussion

In general, the results of our statistical models are consistent with Ran and Lin (2019). Descriptively, we know that students in corequisite courses are less likely to succeed than students who take the transfer-level math course without the corequisite course. Among students who start a transfer-level math course in fall 2019 and fall 2020, those taking a corequisite were 8 percentage points less likely to pass the transfer-level course than those who took the transfer-level course without the corequisite. This unsurprising finding is consistent with the selection into corequisite courses. Specifically, students enroll in corequisite courses only if they or the college believes they need additional support to pass the transfer-level course.

Analytical Approach

In our statistical models, we focus on corequisite courses that accompany transfer-level introductory statistics because they are the most common corequisite courses. We further restrict our analyses to the fall term of each academic year. Limiting the analyses to statistics corequisite courses also allows for a more consistent comparison across colleges. Even so, we know that there are many different approaches to corequisite courses, even within a single discipline. Our data does not allow us to control for those different approaches nor does it allow us to control for a student's high school record.

We use both linear probability models and difference in differences methods to estimate the effect of corequisite enrollment on successful completion of transfer-level statistics (our outcome of interest).

Results from Linear Probability Models

In our linear probability models, we include the entire sample of first-time math students taking transfer-level statistics. Results are shown in Table E1. Though corequisite courses did not become common until fall 2019, our regressions include an analysis of statistics course outcomes from 2015 to 2020. With no controls other than year, we find that statistics corequisite students were 8 percentage points less likely to pass the transfer-level course than those students who took transfer-level statistics without a corequisite (57% versus 65% in 2020 and 2021, see results from model 1 in Table E1). This is not surprising: students should only be placed in the corequisite course if they are not sufficiently prepared to succeed in the transfer-level course.

Adding a full set of controls, with the exception of grade point average in non-math courses, does not appreciably change the finding. Per model 2 in Table E1, corequisite students are 6 percentage points less likely to complete the transfer-level statistics course. Those controls include gender, race/ethnicity, citizenship, first generation status, English proficiency, age, Pell grant recipient status, student goal (transfer or not), first-time college student, and prior dual enrollment.

Overall, our statistical models show that the gap in successful completion between corequisite students and other transfer-level statistics students remains even after we control for a wide range of characteristics, with one notable exception: grade point average in non-math courses eliminates the gap. When we add a control for students' non-math grade point average in the term they enrolled in the transfer-level statistics course, the difference in course completion rates between corequisite students and those who took the course without corequisites is nearly eliminated (only 1 percentage point, per model 3 in Table E1).⁸ Since students who take corequisite courses are more likely to struggle academically than students who take the stand-alone transfer-level statistics course, we also estimated additional models separately for students with low non-math grade point averages. In those models, we find that the probability of successfully completing a transfer-level statistics course is the same for those who

⁸ An additional model, not shown, with college fixed effects completely eliminates the difference.

take the corequisite as for those who do not. In other words, corequisites do not appear to improve students' chances at completing a transfer-level statistics course (but they don't seem to hurt either).

TABLE E1.

Linear probability model results of the effect of corequisite remediation on passing transfer-level statistics

	(1)	(2)	(3)
Corequisite Remediation	077	060	011
	(0.004)***	(.004)***	(0.003)***
Model controls for:			
Students' First Year in CCC	Х	Х	Х
First Year x Corequisite	Х	Х	Х
Student Characteristics		Х	Х
Non-math GPA in Term			Х
Observations	407,884	407,884	395,900
R-squared	0.012	0.059	0.234
Robust Standard errors in parentheses			
*** p<0.01, ** p<0.05, * p<0.1			

SOURCE: Authors' calculations using MIS data.

NOTE: Restricted to first-time math students taking transfer level statistics in the fall. Controls for student characteristics include gender, race/ethnicity, citizenship, first generation status, English proficiency, age, Pell grant recipient status, student goal (transfer or not), first-time college student status, and prior dual enrollment.

Not surprisingly then, we also find that colleges that adopted the corequisite approach to scale did not seem to have better outcomes than those that did not use statistics corequisites at all (Figure E1). Even among colleges that used below transfer-level courses sparingly, those that did not use corequisites had student success rates as high as those that used corequisites extensively. However, there is wide variation across colleges.

FIGURE E1

Colleges that used corequisite courses in statistics did not have higher one-term throughput rates

SOURCE: Authors' calculations using MIS data. Note that these are descriptive results with no controls for student characteristics. NOTE: Includes all first-time math students See the glossary of terms at the end of this report for definitions.

Results from Difference-in-Difference Models

In our difference-in-difference models, we restrict our analyses to two sets of colleges: our control group consists of colleges that have never used corequisite courses, and our treatment group consists of those that have used them extensively beginning in fall 2019 but did not use them before then. We further limit our sample of colleges to those that had at least 100 students in transfer-level statistics courses in fall 2019 and fall 2020. The goal of these models is to determine whether colleges that began using corequisite courses with AB705 implementation had higher levels of student success relative to colleges that did not use corequisites.

In all, only 42 colleges met our restrictions, 11 in the control group and 31 in the case group (with a total sample of over 80,000 students). Results of the full model, controlling for student characteristics (including non-math GPA), are shown in Figure E2. Both before and after the implementation of AB705 in fall 2019, colleges that did not use corequisites had slightly higher rates of success in statistics courses than in colleges in our treatment group. With the implementation of AB705 in fall 2019 (and the adoption of corequisites in our treatment colleges), the difference in course success rates narrowed from a regression adjusted difference of 4 percentage points in our pre-treatment period to 2 percentage points in the post-treatment period. This difference, while small in magnitude, is statistically significant and suggests that corequisite courses might have had a very slight role in improving student success at this set of colleges. It is worth noting that if we only compare fall 2017, the last term prior to the passage (but not implementation) of AB705, with the most recent data (Fall 2020) we find no change in the difference in success rates between the two sets of colleges.

FIGURE E2

Declines in course success rates in fall 2019 were higher in colleges that did not use corequisites

Percent of students passing transfer-level statistics

SOURCE: Authors' calculations using MIS data.

NOTE: Includes all first-time math students for two sets of colleges: a control group consisting of colleges that have never used corequisite courses, and a treatment group consisting of colleges that have used them extensively since fall 2019 but did not use them before then. The sample of colleges included is limited to those that had at least 100 students in transfer-level statistics courses in fall 2019 and fall 2020. Results shown are regression-adjusted, see Technical Appendix section E2 for a description of variables used in our corequisite regression analysis. See the glossary of terms at the end of this report for definitions.

Together, our linear probability and difference-in-differences analyses on the effect of corequisite courses in statistics does not convincingly show that students are better off taking corequisite courses than simply taking the transfer-level course without the corequisite. However, we need much more information before we can conclude that all corequisite courses are ineffective. Unfortunately, that information, such as how the corequisite was taught, placement processes, and other student supports, is very hard to come by. We do know student success in corequisite models varies widely across colleges. In future work, we intend to examine this variation; did some colleges consistently outperform others? If so, via interviews and college scans we will seek to contrast successful colleges with those that did not have such strong results to determine how corequisite courses might best be targeted and structured to increase student success.

Appendix F. What happened to students who started and did not succeed in their first TL math attempt?

The implementation of AB 705 opened the door to transfer-level courses to thousands of additional students. However, about half of students who started in a transfer-level course in fall 2019 did not successfully complete it on their first attempt. By understanding who these students were, their academic record, and how many eventually completed their transfer-level math, colleges may identify ways to support first-time math takers.

Please refer to technical appendix Table B8 for the underlying data in this analysis.

What are the characteristics of these students? Relative to transfer-level students who passed in their first attempt, those who did not were more likely to be Latino, Black, male, traditional college-age, US citizens, and Pell grant or California College Promise Grant recipients. Those who were unsuccessful were also more likely to be in their first term at the community college system and less likely to enroll in a full-time course load).

How did they do in their other courses? On average, these students earned 63 percent of the transferable units they attempted, with almost a quarter earning 25 percent or less. In comparison, successful transfer-level students earned on average 93 percent of the transferable units they attempted— only 2 percent earned 25 percent or less. This is reflected in average GPAs: 2.5 for unsuccessful students and 3.3 for successful students.

Moreover, while 89 percent of successful transfer-level math students completed college composition in their first term, only 55 percent of the unsuccessful group did so. Regardless of the success in their first attempt, over two-thirds of first-time math students who started in a transfer-level course were also first-time English takers.⁹

Did they re-enroll in a transfer-level math course? Thirty-six percent came back for another transfer-level course in the spring; and another 12 percent re-enrolled the next fall. Both percentages are lower than for previous cohorts (41% and 14%). Students who started in a SLAM course were less likely to re-enroll in any transfer-level course than those who started in a BSTEM course (42% versus 56%).

For students in the BSTEM path, these introductory math courses are prerequisite to other courses. But most students in a SLAM course need to complete only that course—so retaking it later does not threaten their progress. The fact that a higher share of first-time math students started in SLAM courses in fall 2019 than in past terms partially explains the relatively lower repeat rates.

Also, given than corequisites continue to be more prevalent in SLAM than in BSTEM courses, students who took the course with corequisite support were less likely to re-enroll as of the next fall than students who took the course without support (41% vs. 50%).

Did they eventually successfully complete the transfer-level course? 26 percent of students who started in a transfer-level course in fall 2019 and did not complete it in their first attempt, successfully completed a transfer-level course by the following fall. The success rate conditional on enrollment was 54 percent.

What about equity gaps? Racial equity gaps in fall-to-fall throughput rates among transfer-level starters who did not succeed on their first attempt are slightly lower compared to the racial equity gaps in one-term throughput rates. However, both Latino and black students are underrepresented in fall-to-fall completions (with a proportionality index of 0.85 for Latinos and 0.72 for Black).¹⁰

⁹ Of the students in this group, about one in five students who took a math corequisite also took an English corequisite.

¹⁰ The Proportionality Index measure compares a group's representation with respect to an educational outcome relative to its representation in the entire cohort of analysis. Above equity means a PI of 1 or greater; near equity means that the PI is between 0.86 and 0.99; and below equity means a PI of 0.85 or lower.

Did they take the course with corequisite support the second time around? Among students who re-enrolled as of the next fall, 31 percent did so in a corequisite model. Almost all students who took the corequisite on their first attempt enrolled in a corequisite the second time around. Meanwhile, only 15 percent of those who took the standalone course the first-time enrolled in a corequisite the second time.

Did they switch from BSTEM to SLAM? About 9 percent of students who first attempted but did not complete a BSTEM course in fall 2019, completed only a SLAM course by the following fall. Conversely, only 2 percent of those who started in a SLAM course ended up successfully completing a BSTEM course. About 8 percent of all students who successfully completed a transfer-level course by the next fall did so in a different college than the one from their first attempt.

If they did not attempt another transfer-level math, were they still enrolled in a CCC? Of the 39,669 students who started in a transfer-level math course and did not successfully complete it, 52 percent *did not* reenroll in another transfer-level math course by the next fall (20,573 students). However, six in 10 of these students were still enrolled in the community college system in the spring (48% full-time) and 40 percent in the fall (41% full-time).

A key takeaway is that students who were unsuccessful in first attempt at transfer-level math were also less likely to be successful in their other courses, which shows that many of these students may struggle with more than just math content.

Still, about 29,300 students in the fall 2019 cohort, despite starting in a transfer-level course, were unable to complete their math requirement as of fall 2020. For some of these students, the pandemic was a determinant factor. When courses resume face-to-face, it will be important to study whether fewer students start in and successfully complete transfer-level.

PUBLIC POLICY INSTITUTE OF CALIFORNIA

> The Public Policy Institute of California is dedicated to informing and improving public policy in California through independent, objective, nonpartisan research.

Public Policy Institute of California 500 Washington Street, Suite 600 San Francisco, CA 94111 T: 415.291.4400 F: 415.291.4401 **PPIC.ORG** PPIC Sacramento Center Senator Office Building 1121 L Street, Suite 801 Sacramento, CA 95814 T: 916.440.1120 F: 916.440.1121