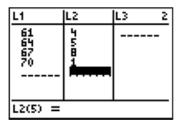
# ESTIMATING THE MEAN OF GROUPED DATA

| Heights of females<br>(in inches) | Frequency |
|-----------------------------------|-----------|
| 60 – 62                           | 4         |
| 63 – 65                           | 5         |
| 66 – 68                           | 8         |
| 69 – 71                           | 1         |

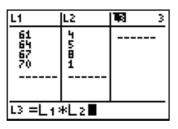
To the left is a grouped frequency distribution of the heights (in inches) of female students in a physical education class. Use the calculator to assist you with estimating the mean of the grouped distribution.

## STEP 1: Enter L1 and L2

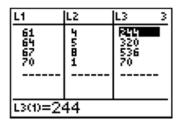
Determine the Midpoint for each interval. (Remember: the Midpoint = (Lower Class Limit + Upper Class Limit)/2.) Now, enter the Midpoint into L1 and the corresponding frequencies for each midpoint into L2. (Screen 1)


## STEP 2: Create L3

Create L3 by multiplying L1 times L2. This will give you xf – the midpoint times its corresponding frequency. (Remember we are using the concept of a weighted average. The midpoint is the data element in this case L1, and the frequency is the weight, in this case L2.)


To create L3 --- highlight L3 and type  $2^{nd} > L1 * 2^{nd} > L2$  and hit enter. (Screen 2)

Upon hitting enter, your screen will show the results of multiplying the midpoint times its corresponding frequency *xf*. (Screen3)


#### Screen 1



Screen 2



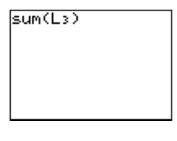
Screen 3



# STEP 3: Find the sum of L3 (xf) and the sum of L2 (f)

To sum a list follow the following sequence in order.

 $2^{nd}$  > List (above STAT) > Math > 5 > (type in list –  $2^{nd}$  L3) > ) - {right hand parentheses} > ENTER


Look at the following screens to observe the sequence:

| 2 <sup>nd</sup> > List (above STAT)               | Arrow over to MATH                                                                                   | Select Option 5 by typing 5 |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------|
| Screen 4.                                         | Screen 5                                                                                             | Screen 6                    |
| NATH<br>L1<br>L2<br>L3<br>L4<br>L5<br>L6<br>RESID | NAMES OPS <b>Dimu:</b><br>Demin(<br>2:max(<br>3:mean(<br>4:median(<br>5:sum(<br>6:prod(<br>7↓stdDev( | sum(                        |

Type in the List to be summed, which in this case is L3. This will find the sum of the xf list containing the product of the midpoint and its corresponding frequency (weight). The following screens continue the sequence.

Screen 7

/:H



Hit ENTER to obtain the Sum. Screen 8

| sum(L3) | 1170 |
|---------|------|
|         |      |
|         |      |

The sum of L3 is 1170. (Screen 8) Now do the following to find the sum of the frequency column L2 (weight):

Screen 9 sum(L3) 1170 sum(Lz) 18

 $2^{nd}$  > LIST (above STAT) > MATH > 5 > (type in list-  $2^{nd}L2$  > ) > ENTER

(Screen 9)

## STEP 4: Find the estimate of the mean.

The formula for the estimated mean is

ESTIMATED MEAN = sum(xf) / sum(f)

Sum(L3) is the sum of the xf and Sum(L2) is the sum of the f. In order to get the estimated mean, the sum of L3 must be divided by the sum of L2. In this example, divide 1170 by 18 and you will get 65. (Screen 10)

The estimated mean is 65.

Screen 10

| sum(L3)            | 1170 |
|--------------------|------|
| sum(Lz)<br>1170/18 | 18   |
|                    | 65   |
|                    |      |