FINDING THE VARIANCE AND STANDARD DEVIATION **OF A SINGLE SET OF DATA VALUES**

The following data set gives the ages (in years) of ten brides at their first marriage: 31.8 24.5 26.7 21.3 45.6 35.9 22.5 33.1 42.3 30.6

We want to find the variance and standard deviation of the sample data set. Remember variance and standard deviation are based on the goal of finding the "average deviation" of data from the mean of the data set. Therefore, **STEP 1** will be to enter the data into the calculator so that we can use the calculator to assist us.

STEP 1: Enter Data into a List

Enter data into the calculator by pushing the **STAT** key and choosing option 1-Edit. Hit ENTER. (Screen 1)

After typing in each data element, hit ENTER. Continue until all data has been entered into L1. (Screen 2) Use **2**^{*nd*} - **QUIT** (above **MODE**) to quit your list.

STEP 2: Find the Sum of the List

To find the mean we must add up the values in the data set then divide by the number of elements in the sample, in this case ten.

Find the sum of a list using the following sequence: 2nd - LIST (above STAT) > MATH > option 5 (SUM) > 2nd L1 >) > ENTER

(Screen 3)

Next hit the division symbol /, then 10, then ENTER to find the mean of the sample set. (Screen 4)

The mean of the sample data is 31.43 years.

Screen 1

Screen 2

Screen 4

sum(L1)	314.3
Ans/10	31.43

STEP 3: Find the deviations squared of each element from the mean

Tip: DO NOT ROUND your answer. On intermediate steps of calculations do not use rounded numbers.

Therefore, we will use 31.43 to compute the deviations squared for each data element. Go to the data lists: type **STAT** > **1-Edit** > **ENTER** (Screen 5)

We will have the calculator compute the deviations squared in L2. Do the following:

Highlight *L2*. (Screen 6)

Now type: (L1 - 31.43)² (Screen 7)

Hit ENTER. (Screen 8)

The calculator has just calculated all the deviations squared for the data in the sample.

STEP 4: Find the sum of the deviations squared

Since we are trying to compute an average, we must find the sum of the deviations squared. Type the following:

First: **2**^{*nd*} - **QUIT** (above **MODE**) to quit your list.

Then: 2^{nd} - *LIST* (above *STAT*) > *MATH* > *5-sum* > *L2* > *)* > *ENTER* (Screen 9) In this case, 595.301 is the sum of the deviations squared.

STEP 5: Find the variance

We now are ready to find the "average deviation" by dividing. Remember, however this is a sample and the average we find is a "fudged average" because we divide by n - 1 (9 for this data sample) rather than n (which is 10). (Note: If this data set was a population, we would have divided by 10.)

Hit the division symbol /, then 9, and then ENTER. (Screen 10)

The answer showing is s^2 , the variance of the sample. The variance is in square units. (Interpretation: The ages in the sample deviate from mean an average of 66.1 square years.)

Screen 5

STEP 6: Find the standard deviation

Remember, the standard deviation is obtained by taking the square root of the variance. To complete the process and put the answer into years, you will do the following:

 2^{nd} - $\sqrt{}$ (above x^2) > 2^{nd} -ANS (above the (-) key next to ENTER) > ENTER

(Screen 11)

8.132930318 rounded to two decimal places is 8.13. Therefore, s = 8.13 is the standard deviation of the sample data set. (Interpretation: Ages in the data set deviate from the mean of 31.43 years by an average of 8.13 years.)

Screen 2	11
BUMCE	595.301
Ans/9 66.1 Ans 8.13	, 66.14455556
	8.132930318